
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Design and in-orbit Demonstration of a
Post-Quantum Cryptographic Solution
Based on KEMTLS-PDK to Enhance

Satellite Communication Security

Supervisors:
Prof. Cataldo Basile

Dr. Nicoló Maunero

Eng. Dominik Marszk

Candidate:
Noemi Terzo

Academic Year 2022/2023
Torino

Ai miei genitori,
ai miei fratelli

e ai milioni di sonagli.

“Ho gli occhi
pieni di nuvole e comete.”

-Goliarda Sapienza

Abstract

In recent years, cyber-attacks leveraging quantum algorithms like Shor’s and Grover’s, exe-
cuted on cryptanalytically-relevant quantum computers, have demonstrated their potential
to compromise and break the cryptographic systems currently safeguarding information
systems. Recognizing the urgent necessity to bolster data and communication security in
the quantum age, the National Institute of Standards and Technology took a significant
step in July 2022 by announcing the four post-quantum cryptographic (PQC) algorithms to
standardize by 2024. Notably, Kyber was chosen as key establishment algorithm, marking
a pivotal transition towards quantum-safe cryptographic solutions.

In the realm of space technology, current space systems predominantly rely on sym-
metric cryptographic primitives. However, there is a growing imperative to incorporate
asymmetric cryptography into future systems. This strategic shift is driven by the over-
arching objectives, including enhancing flexibility for federated operations, adopting digi-
tal signature-based authentication, improving scalability – essential in new space and for
projects with large constellations – and fostering interoperability with terrestrial systems.

Security disruption in space systems, particularly in terms of data integrity and authen-
tication, can have profound consequences during data transmission to and from spacecraft.
Data may be corrupted, manipulated, or sent by malicious actors, and unauthorized op-
erations may be performed, representing significant risks. In extreme cases, these risks
could result in mission failure, loss of human lives in the case of crewed missions and
causing harm to people and property. Furthermore, the lack of data confidentiality in
communications between satellites and between ground stations and satellites could ex-
pose private and sensitive information to untrusted parties. Therefore, given the quantum
threat mentioned earlier, it is necessary to begin adopting quantum-resistant asymmetric
cryptographic primitives in space systems.

The current Master’s Thesis project was conducted during the internship at the Euro-
pean Space Operations Centre of the European Space Agency (ESA). The Thesis objective
is to design and implement a specific solution that integrates Post-Quantum Cryptogra-
phy into space missions to secure sessions between ground-based Mission Operations (MO)
applications and those on spacecraft. To achieve this, a new MO service called Security
Service is introduced. It implements KEMTLS-PDK protocol with Kyber512 as key es-
tablishment algorithm, and it is used to exchange encrypted messages after the successful
creation of a secure session. Software security modules are used for key material storage
and a Public Key Infrastructure on ground is employed for generating, revoking, and ver-
ifying the X.509 public key certificates of the nodes. The entire implementation has been

4

built on top of the CCSDS (Consultative Committee for Space Data Systems) MO Mes-
sage Abstraction Layer (MAL), operationally used by ESA OPS-SAT spacecraft, to ensure
ability to demonstrate the project in orbit.

The implementation was tested in a real-life scenario, firstly with OPS-SAT satellite’s
Engineering Model to provide a representative example of execution, and subsequently
during a live ground-station pass with the flying satellite.

5

Contents

List of Tables 8

List of Figures 9

1 Introduction 11

2 Background 13
2.1 Key Encapsulation Mechanism . 13

2.1.1 RSA-KEM . 14
2.2 Authenticated Key Exchange . 15
2.3 Public Key Infrastructure . 15

2.3.1 Certification Authority . 15
2.3.2 Online Certificate Status Protocol 16

2.4 Transport Layer Security 1.3 . 16
2.4.1 TLS 1.3 handshake . 17
2.4.2 OCSP Stapling . 18

2.5 Hardware Security Module . 18

3 Post-Quantum Cryptography 21
3.1 Quantum Computing . 21

3.1.1 Shor’s algorithm . 22
3.1.2 Grover’s algorithm . 23

3.2 Transition to Post-Quantum Cryptography 24
3.3 CRYSTALS-Kyber . 24

3.3.1 Key Encapsulation Mechanism functions 25
3.3.2 Key exchange . 26
3.3.3 Authenticated key exchange . 27
3.3.4 Parameters . 29

3.4 KEMTLS-PDK . 29
3.4.1 Handshake with proactive authentication 30
3.4.2 Comparison with TLS 1.3 . 33

4 Cryptography in Space Systems 35
4.1 Cybersecurity for Space Systems . 35

4.1.1 High-Level Architecture of a Space System 36
4.1.2 Transformative Applications of Space Systems 37

6

4.1.3 Cyber-attacks against Space Systems 37
4.1.4 Countermeasures . 38

4.2 State-of-the-Art in Cryptography for Space Systems 39
4.3 Goals in Cryptography for Space Systems 40
4.4 Overview of an active ESA Project: Hardware Security Module As A Service

(HSMAAS) - MO . 41

5 Design and implementation of the KEMTLS-PDK-based architecture 43
5.1 Architecture . 43

5.1.1 Ground end node . 44
5.1.2 Space end node . 45
5.1.3 Ground Public Key Infrastructure 45

5.2 Implementation . 46
5.2.1 Software behaviour . 46
5.2.2 KEMTLS-PDK-based handshake 48
5.2.3 Secure Message Abstraction Layer 52
5.2.4 Secure Sessions . 53
5.2.5 Software Security Modules . 54

5.3 Implementation challenges . 56
5.3.1 Kyber certificate . 57
5.3.2 Generation of Certificate Signing Requests 58
5.3.3 Certificate verification with OpenSSL 59

6 Integration and Testing with OPS-SAT Satellite 61
6.1 OPS-SAT . 61
6.2 Experiment architecture . 63
6.3 Setup configuration of the experiment . 65
6.4 Run the in-orbit demonstration . 66
6.5 Results . 70

7 Conclusions and Future Work 73

Bibliography 77

7

List of Tables

3.1 Kyber parameters . 29
5.1 MO operations . 47

8

List of Figures

2.1 RSA-KEM . 14
2.2 TLS 1.3 handshake. 17
2.3 Hardware Security Module structure. 18
3.1 KYBER key exchange. Source: [1] . 27
3.2 Kyber key exchange - MITM attack. 27
3.3 Kyber authenticated key exchange. Source: [1] 28
3.4 KEMTLS-PDK handshake. Source: [41] 31
4.1 High-level architecture of a space system. Source: [22] 36
4.2 ESA space markets that require cybersecurity. Source: [5] 41
5.1 Designed architecture . 44
5.2 Sequence diagram of the handshake. 47
5.3 Software behaviour after session establishment. 48
5.4 First part of KEMTLS-PDK-based handshake. 50
5.5 Second part of KEMTLS-PDK-based handshake. 51
5.6 Secure MAL message encoding. 53
5.7 Multiple secure sessions for the same consumer. 54
5.8 Example of the content of a Software Security Module. 55
5.9 Initial implemented architecture. 56
5.10 First part of initial KEMTLS-PDK-based handshake. 57
5.11 OpenSSL index.txt file content. 59
6.1 OPS-SAT Satellite Source: ESA. 62
6.2 High-level experiment architecture. 63
6.3 Interactions within the architecture. 64
6.4 Connecting CTT to NMF Supervisor Provider. 67
6.5 Store session key. 68
6.6 Onboard time decrypted by CTT. 68
6.7 Logs of CTT’s handshake with exp263. 69
6.8 Logs of exp263’s handshake with CTT. 69
6.9 Logs of CTT outgoing and incoming messages. 71

9

10

Chapter 1

Introduction

Nowadays, cyber-attacks based on quantum algorithms, such as Shor’s and Grover’s ones,
pose a significant threat to a large portion of the classical cryptography currently utilized
in information systems. Cryptography disruption results in compromised confidentiality,
leaving data accessible to unauthorized parties, potentially compromising sensitive infor-
mation. The implications of such disruptions are particularly grave within Space domain,
where lack of confidentiality may lead to improper functioning of space systems and may
threat human life in scenarios where those systems involve human presence and informa-
tion concerning individuals. Given these circumstances, it is necessary to start considering
solutions that include Post-Quantum Cryptography to enhance security of space systems
against evolving quantum threats.

This master’s thesis work is the result of a six-months internship project conducted at
the European Space Operations Centre of the European Space Agency, in Darmstadt. The
primary objective was to develop a robust and functional architecture able to address the
quantum threat by implementing the Post-Quantum Cryptographic protocol KEMTLS-
PDK. The KEMTLS-PDK protocol is an Authenticated Key Exchange (AKE) based on
a Key Encapsulation Mechanism (KEM) and represents a Post-Quantum Cryptographic
evolution of TLS 1.3 protocol. This protocol is utilised on top of the Consultative Com-
mittee for Space Data Systems (CCSDS) Message Abstraction Layer, for secure session
establishment between parties. These parties are ground nodes, i.e., Mission Operations
(MO) applications that run on ground, and space nodes, i.e., MO applications onboard
of a spacecraft. The proposed architecture includes a Public Key Infrastructure managed
on ground, which is used to generate, revoke and verify X.509 public key certificates. Ad-
ditionally, Software Security Modules are employed on end nodes to store key material,
including session keys established through the KEMTLS-PDK-based handshake, and per-
form symmetric encryption and decryption of messages exchanged within a secure session.

The remainder of this document is structured as follows: Chapter 2 introduces the
concepts of KEM and AKE, providing a classical example of a key encapsulation mechanism
such as RSA-KEM, and an overview of TLS 1.3 and of TLS 1.3 handshake. Moreover, the
concepts of Public Key Infrastructure, Certification Authority, OCSP Responder, OCSP
stapling and Hardware Security Modules are explained, since all of them are key elements
in the understanding of the architecture to implement.

Chapter 3 delves into Post-Quantum Cryptography (PQC). In order to understand

11

Introduction

the importance of transitioning systems to a cryptography that is quantum-resistant, the
chapter starts discussing Quantum Computing, Shor’s algorithm and Grover’s algorithm,
that constitute threats against classical cryptography. The time needed to perform this
transition is analysed, according to "Quantum Threat Timeline Report 2022" [15]. Then,
the chapter explores CRYSTALS-Kyber algorithm, which is NIST’s choice for key estab-
lishment, and the KEMTLS-PDK protocol.

In Chapter 4, the state-of-the-art in cryptography for space systems is discussed. The
discussion starts by analysing a space system architecture. Possible cyber-attacks against
space systems are presented to understand the importance of cybersecurity in Space do-
main. Some available countermeasures against these attacks are described, focusing later
to how and where cryptography is implemented in a space system and which are the ob-
jectives of using it. At the end of the chapter, ESA, Skudo and CGI project that serves as
the basis for the thesis is described.

Chapter 5 is dedicated to the design and subsequent implementation of the thesis
project. Starting from the analysis of the designed architecture and of involved entities,
the implementation is described in terms of software behaviour. The KEMTLS-PDK-based
handshake, developed on top of Message Abstraction Layer, is described step-by-step, to
explain what happens during the establishment of a secure session. At the end of the
chapter, challenges faced during the implementation phase are also discussed.

Chapter 6 explores the integration of the implemented architecture into a real space
system, using OPS-SAT satellite for experimentation. OPS-SAT experimental nature al-
lows people from all around Europe to test their software onboard of the spacecraft. The
steps to conduct the experiment, along with results and analysis, are provided.

Chapter 7 concludes the thesis, summarizing the entire procedure that led to the suc-
cessful implementation of the project. The chapter proposes insights into potential future
evolution of the implemented work and of the used tools, to conduct the work to a solution
that increases the utilisation of Post-Quantum Cryptography.

12

Chapter 2

Background

In this chapter, the foundation for a comprehensive understanding of the thesis work is
established by presenting key concepts essential to its context. The concepts discussed
here, including Key Encapsulation Mechanism, Authenticated Key Exchange, Public Key
Infrastructure, TLS 1.3 protocol and Hardware Security Module, have been studied during
the Master’s Degree courses and are crucial in shaping the landscape of the thesis.

2.1 Key Encapsulation Mechanism
A Key Encapsulation Mechanism (KEM) is an asymmetric cryptographic technique for
securing symmetric keys employed to encrypt data without having to use the padding.
Given two parties A and B, a KEM allows them to establish a shared secret key ss in the
key space K together with its encryption C. The encryption C is used for sharing ss, while
ss is used for long data encryption. A formal definition of a KEM is provided in [4]: given
a key space K, a KEM is a triple of algorithms (KG, E, D), where

• KG is the key generation algorithm that outputs key pairs (pk, sk), where pk is the
public key and sk is the private key.

• E is the probabilistic encapsulation algorithm, that encrypts pk and outputs a pair
(k, c), where k is a key that belongs to the key space K and c is the corresponding
ciphertext.

• D is the decapsulation algorithm used to decrypt c with the private key sk and outputs
the shared secret key k’ that belongs to K and is equal to k.

This mechanism eliminates the complexity of the padding scheme and the proofs needed
to show that the padding is secure, because the symmetric key ss is the result of encapsula-
tion, so it is not necessary to map bit strings into algebraic message space as in traditional
public-key encryption. A KEM is implicitly used in the latest version of TLS handshake,
which will be described in section 2.4.1 of the current chapter.

An example of a classic KEM is presented in the following section, reserving the descrip-
tion of a post-quantum KEM for the forthcoming Post-Quantum Cryptography chapter.

13

Background

2.1.1 RSA-KEM
A classic KEM algorithm is RSA-KEM, which is described in [7]. As shown in Figure 2.1,
consider two peers, Alice and Bob, who wish to establish a shared secret key for securing
communication. The mechanism unfolds as follows:

1. Alice initiates the process by sharing her public key (n, e) with Bob, where n is the
modulus and e is the public exponent.

2. Bob generates a random integer r such that 1 < r < n, which serves as the basis for
the shared secret key. To derive the secret key ss, Bob employs a Key Derivation
Function (KDF) that takes r as input. The KDF is a one-way function, ensuring that
it is computationally infeasible to compute r from the secret key ss. This property
is essential because even if an attacker gains access to ss, they cannot deduce the
original random integer r.

3. Bob computes the encryption of r as c = re mod n and transmits this ciphertext to
Alice.

4. Upon receiving the ciphertext c, Alice uses her private key exponent d to perform the
decryption as r = cd mod n.

5. Alice applies the same KDF used by Bob to r for computing the shared secret key
ss. This ensures that both parties possess the identical symmetric key for securing
communications.

Figure 2.1. RSA-KEM

14

2.2 – Authenticated Key Exchange

2.2 Authenticated Key Exchange
The Authenticated Key Exchange (AKE) is an important cryptographic primitive utilised
in information and network security to establish secure communications over untrusted
channels avoiding man-in-the-middle-based attacks. It relies on asymmetric cryptography
- each participating entity possesses a keypair composed by a pubic key, which is freely
exchanged, and a private key, which must be kept secret - and consists of:

• Negotiation of the cryptographic shared secret key between two parties, to be used
for encrypting and decrypting exchanged data.

• Authentication of the parties involved in the key exchange. Authentication can be
one-way or mutual, implicit or explicit. It is explicit if achieved during the execution
of the protocol explicitly using other primitives like digital signature schemes. The
authentication is implicit when it relies on the ability that only the parties have to
compute the session key, without using other primitives [27].

An Internet protocol that uses AKE is TLS, and it is described in section 2.4. An
explicitly authenticated key exchange is Diffie-Hellman AKE protocol where the two peers
use long-term signature keys to perform authentication. An implicitly authenticated key
exchange is Double Diffie-Hellman AKE protocol.

2.3 Public Key Infrastructure
A Public Key Infrastructure (PKI) is a technical and administrative infrastructure put
in place for the creation, distribution and revocation of Public Key Certificates (PKCs).
These certificates are data structures that securely bind a public key, used for cryptographic
operations, to specific attributes used to identify the corresponding private key holder.
This secure linkage is typically achieved through the digital signature of a trusted authority
named Certification Authority, but there are also other techniques as placing certificates on
a blockchain or establishing direct trust relationships with personal signatures. PKCs play a
pivotal role in achieving non-repudiation of digital signatures, serving as concrete evidence
admissible in a court of law, preventing the authors of digital signatures from denying
their responsibility. Without a PKC, digital signatures can only provide authentication
and integrity because the binding between the identity and the private key misses. The
X.509 standard is widely adopted for associating public keys with identities.

2.3.1 Certification Authority
The Certification Authority (CA) is the authority responsible for issuing PKCs, digitally
signing them with its private key. CAs can be organized hierarchically, where the CA of
an organization issues PKCs to subordinate organizations’ CAs. A CA can serve as an
issuing CA with respect to the PKCs it issues and as a subject CA in relation to the PKC
issued to it. CAs also possess the authority to revoke the certificates they have issued
and maintain records of PKC statuses in Certificate Revocation Lists (CRLs) or Online
Certificate Status Protocol (OCSP) servers.

15

Background

2.3.2 Online Certificate Status Protocol
The Online Certificate Status Protocol (OCSP) is a client-server protocol designed to as-
certain the real-time status of a PKC. The OCSP server responds to specific queries,
providing information about the current validity of a particular PKC and digitally signing
its responses. When the OCSP server is directly operated by the CA, it has direct access
to the CA database.

2.4 Transport Layer Security 1.3
Transport Layer Security 1.3 is the latest version of the Transport Layer Security (TLS)
protocol, which establishes a secure transport channel on top of transport layer (Layer
4) of the OSI model. As described in [23], TLS 1.3 provides server authentication and,
optionally, client authentication. These authentication mechanisms employ asymmetric
cryptography such as RSA and Elliptic-Curve Digital Signature Algorithm (ECDSA), or
symmetric pre-shared key (PSK), or Edwards-Curve Digital Signature algorithm (EdDSA).
TLS 1.3 ensures both data confidentiality and data integrity, permitting only the intended
endpoints to understand the transmitted data and to detect any unauthorized change. It
reduces the impact on performances and networking by reducing the setup time handshake
latency. The handshake is not in clear because this version of the protocol enhances the
encryption both for security and privacy. Privacy is guaranteed because it is not possible
to find the client certificate that identifies the person who is using the browser.

Two objectives of TLS 1.3 are the improvement of resiliency against cross-protocol at-
tacks, and the removal of legacy features no longer useful for TLS. The protocol is designed
to facilitate a smooth and secure migration of the cryptography it uses. Specifically, TLS
1.3 no longer permits the use of RSA key exchange due to its inability to provide forward
secrecy. Consequently, RSA keys are exclusively reserved for server authentication. For
key exchange, Ephemeral Diffie-Hellman (DHE) or Elliptic-Curve DHE (ECDHE) are em-
ployed, with predefined groups to thwart potential attacks exploiting small DH parameters
on the server side.

TLS 1.3 enhances message protection through the use of Authenticated Encryption
with Associated Data (AEAD) algorithms and completely eliminates data compression.
Digital signature for ephemeral keys is performed using RSA with the modern secure
RSA-PSS (Probabilistic Signature Schema), and the entire handshake is digitally signed.
Notably, TLS 1.3 does not specify entire ciphersuites but focuses on orthogonal elements,
i.e., the encryption cipher, the encryption mode and the HKDF (i.e. Hashed Key Derivation
Function). The allowed certificate types are RSA, ECDSA, EdDSA, while the allowed key
exchange mechanisms are DHE and ECDHE, so in TLS 1.3 there are only five ciphersuites:

TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384

TLS_CHACHA20_POLY1305_SHA256

TLS_AES_128_CCM_SHA256

TLS_AES_128_CCM_8_SHA256

16

2.4 – Transport Layer Security 1.3

2.4.1 TLS 1.3 handshake
TLS comprises two fundamental protocols: the handshake protocol and the record protocol.
The record protocol uses parameters established during the handshake protocol to protect
communications, dividing data traffic into a series of records independently protected by
means of traffic keys.

The TLS handshake protocol, as an Authenticated Key Exchange (refer to section 2.2
for more information), establishes a secure encrypted channel between a client ad a server.
Its objectives encompass:

• Agreement on the algorithms governing data confidentiality and integrity for the
specific session.

• Exchange of two random values generated independently by the client and the server.
These values are essential for subsequent key generation.

Figure 2.2. TLS 1.3 handshake.

• Establishment of a symmetric key through the employment of DH or ECDH key
exchange.

• Negotiation of a session ID (i.e. identifier).

• Exchange of certificates needed for authentication.

17

Background

The TLS 1.3 handshake is depicted in Figure 2.2: the client initiates the handshake
by transmitting a Client Hello message that contains the client random value, a list of
supported ciphersuites and the client’s part of the key share. The server responds with a
Server Hello message, that contains the server random value, the selected protocol version,
the chosen ciphersuite, the server’s certificate encrypted using a temporary key unique to
the handshake and the Finished message encrypted with the same temporary key. Finally,
the client concludes the handshake by transmitting the encryption of its Finished message,
also encrypted with the temporary key.

2.4.2 OCSP Stapling
OCSP Stapling is a TLS extension that must be specified in TLS handshake and it works
as follows: the TLS server pre-fetches the OCSP responses necessary to validate the entire
certificate chain and provides these responses to the client during the handshake, as part
of the server’s certificate message, so the OCSP responses are stapled together with the
certificates. In this way, the certificate and the proof that the certificate is valid at the
current moment are provided. A benefit of this extension is privacy, because OCSP server
does not know client’s identity, but there is the disadvantage of the pre-generation of OCSP
responses - they are not fresh and there is the risk of fast attacks.

Typically, OCSP Stapling is an automatic process managed by the server. Nonetheless,
the client has the option to explicitly request OCSP Stapling within the Client Hello
message during the TLS handshake.

2.5 Hardware Security Module
A Hardware Security Module (HSM) is a cryptographic accelerator for servers, i.e., a
co-processor used to perform efficiently cryptographic operations that are computationally

Figure 2.3. Hardware Security Module structure.

intensive. It is extensively used as a secure framework for identification and authentication:
it permits to perform encryption, decryption, signature, signature validation, hashing,
secure cryptographic-key management and trusted random number generation - used to
create encryption keys.

18

2.5 – Hardware Security Module

HSMs are available in various form factors, including PCI boards, external devices
(e.g., USB or SCSI), or even IP network devices (i.e., netHSM). There are not bandwidth
and power limitations so HSMs have high speeds, but in case of netHSMs, they typically
store multiple keys for various servers, introducing challenges related to authentication and
authorization requests, determining which servers are authorized to access specific keys.

As depicted in Figure 2.3, HSMs incorporate a protected nonvolatile memory where
cryptographic key material is stored and private keys are tamper-resistant because in case
of tampering, the device is designed to erase its content. The computational efficiency
is due to a crypto coprocessor, which is a hardware circuit that implements the required
cryptographic functions (e.g., RSA or symmetric algorithms) directly in hardware. The
crypto coprocessor is the only one allowed to access the protected memory and use the
stored private keys. HSMs hinder side-channel attacks - attacks based on leakage of infor-
mation after attacker’s observation of physical properties of the hardware device - because
it is not possible to analyse noise, power consumption, electronic leaks and the time used
to generate keys within the chip.

19

20

Chapter 3

Post-Quantum Cryptography

The widespread availability of quantum computers poses a significant threat to many cryp-
tographic systems in use today. Encryption, digital signatures, key exchanges, and random
number generators will all be vulnerable to quantum attacks. Consequently, there is an
urgent imperative to develop and adopt cryptosystems based on Post-Quantum Cryptog-
raphy, specifically designed to resist quantum attacks.

The current chapter initiates with an introduction to quantum computing, highlighting
the quantum algorithms that pose a challenge to classical cryptography. Subsequently, it
provides an analysis of the essential transition towards Post-Quantum Cryptography. The
chapter concludes with an in-depth examination of the algorithm chosen by the National
Institute of Standards and Technology (NIST) in July 2022 for key establishment, namely
Kyber, and KEMTLS-PDK protocol, both of which constitute integral components of the
Master’s Thesis project.

3.1 Quantum Computing
Quantum mechanics is the field of physics that studies matter and energy at small length
scales as electrons, atoms and molecules which have consequences also at macroscopic
scale. The uncontrolled interaction between a quantum system and its environment pro-
duces the process named quantum decoherence, wherein the system loses information to the
environment, i.e. the system is no longer able to interact coherently with its surroundings.

Quantum computing is the study of computers that use quantum mechanics features
in calculations, to solve complex problems whose resolution would be slower on classical
computers. The basic unit of quantum computers is the qubit, which can store the values
0, 1 or the linear combination of the two states, named superposition, so zero and one
can be thought as coexisting and being processed at the same time. Superposition is the
ability of a quantum system to be contemporary in multiple states. Quantum computers use
superposition and quantum entanglement to speedup the resolution of problems. Quantum
entanglement consists of two systems that are strongly correlated to each other, even if
they are separated by millions of light-years of space, so gaining information about one of
them provides immediate information about the other system.

Quantum computing requires high control of the quantum behaviour, to avoid the loss of

21

Post-Quantum Cryptography

information caused by quantum decoherence occurrence. One of the most pressing concerns
is the impact of quantum computing on cybersecurity. Many widely-used cryptographic
schemes rely on mathematical problems that are considered computationally infeasible for
classical computers to solve. For instance, the RSA cryptosystem depends on the difficulty
of factoring large numbers, a challenge that can be overcome by quantum computers using
Shor’s algorithm. Other examples of vulnerable cryptosystems are Diffie-Hellman Key
Exchange and Elliptic-Curve Diffie-Hellman Key Exchange. Furthermore, the ability of a
quantum computer to search through a solution space of 2N values is roughly 2N/2 steps,
which means that quantum computers may also weaken symmetric key cryptography by
means of algorithms like Grover’s one.

The following subsections will provide insights into Shor’s and Grover’s algorithms,
shedding light on their implications for classical cryptography.

3.1.1 Shor’s algorithm
It is widely believed that factoring large numbers and finding discrete logarithms using
classical computers increases with the exponential size of the key. Shor’s algorithm [29],
developed by the American mathematician Peter Shor in 1994, is a quantum computing
algorithm for finding the prime factors of an integer N in polynomial time of logN , i.e. in
O((logN)2(log logN)(log log logN)). If quantum computers do not succumb to quantum
noise or decoherence, Shor’s algorithm can break various cryptographic schemes, including
RSA, Finite Field DH key exchange, and ECDH key exchange.

It reduces factorisation problem to order-finding problem: for any instance of factori-
sation problem, it is possible to construct in polynomial time an instance of order-finding
problem such that from its solution, it is always possible to derive the solution of factori-
sation problem in polynomial time. This reduction is made possible by randomization and
can be performed on classical computers. So, rather than directly attempting the factor-
ization of an integer N , the quantum algorithm finds the order of an element x in the
multiplicative group (mod N). The multiplicative group (mod N) is the group of integers
coprime to N that belong to the set {0,1, ..., N − 1}. The order of x is the smallest integer
r for which the following congruence holds:

xr ≡ 1 (mod N) (3.1)

Firstly, an integer x (mod N) such that 0 < x < N is randomly chosen. The greatest
common divisor gcd(x, N) is computed, for example using the Euclidean algorithm, and
if the result is equal to 0, a new random x must be computed in order to find a non-trivial
factor of N .

To determine the period r of the number N that needs to be factored, quantum com-
puting becomes indispensable. Given N , its period is the integer r that satisfies:

N r = e (3.2)

where e is the identity element.
A sequence of positive integers k is defined such that:

f(k) = xk (mod N) (3.3)

22

3.1 – Quantum Computing

where xk (mod N) is the reminder of the division of xk by N . In this sequence, one of the
terms is equal to one, and the following terms are periodic:

f(k + t) = f(k) (3.4)

Here, t is the variable used to indicate the period. The integer r is the smallest positive
integer for which:

f(r) ≡ xr ≡ 1 (mod N) (3.5)

The algorithm proceeds by choosing a suitable Q which is a power of 2, i.e., Q = 2L, such
that N2 ≤ Q ≤ 2N2. Then, a random integer p, such that gcd(p, N) = 1, is chosen. Two
quantum registers are created, one for the input and the other for the output, and they
are entangled, ensuring that if one collapses, so does the other. The Fourier Transform is
applied to the input register, a measurement is made on the first register to obtain y and
the period r is obtained via continued fractions for y/2L.

The result of the quantum step specifies if it is necessary to test another positive random
integer x or if the factor of N has been found. If r is odd or the common factor is trivial,
it is necessary to repeat the first steps choosing a new positive integer x. On the other
hand, if r is even, the Euclidean algorithm is used to check if xr/2 + 1 is equal to 0 mod N
because from the formula 3.5 it is known that xr ≡ 1 (mod N), so

(xr/2)2 − 1 ≡ xr − 1 ≡ 1 − 1 ≡ 0 (mod N) (3.6)

and formula 3.7 follows:

(xr/2 + 1)(xr/2 − 1) ≡ 0 (mod N) (3.7)

If xr/2 + 1 /= 0 mod N , it exists a positive integer xr/2 + 1 that multiplied to the co-prime
xr/2 − 1 produces 0 mod N , so xr/2 − 1 is co-prime with N .
If xr/2 + 1 = 0 mod N , the first step of the algorithm must be recomputed.
If xr/2 + 1 /= 0 mod N , the solution of the algorithm is gcd(xr/2 − 1, N).

3.1.2 Grover’s algorithm
It is generally believed that although quantum computers bring fatal threats to asymmet-
ric cryptography such as RSA, they do not fatally threat symmetric cryptography such as
AES. Unfortunately, this is not true. Grover’s algorithm [9], developed in 1996 by Indian-
American computer scientist Lov Kumar Grover, is a quantum computing algorithm that
has a significant impact on symmetric cryptography. Grover’s algorithm reduces the com-
putational complexity of certain symmetric key problems from 2N to 2N/2, making it a
potent tool against symmetric cryptography that uses keys shorter than 256 bits. It ap-
plies to tasks of finding a preimage, i.e., the set of all elements of the domain mapped into
a given subset of the co-domain. Knowing the (plaintext, ciphertext) pairs, it can find the
symmetric key of a symmetric algorithm such as AES in the square root of the time that
a normal exhaustive search would take. E.g., finding an AES-128 secret key in about 264

steps instead of the 2128 steps required for a classical computer.

23

Post-Quantum Cryptography

Grover’s algorithm solves the task of function inversion: given a function y = f(x),
which can be evaluated on quantum computers, it can calculate x given y. This algorithm
offers significant asymptotic speed-ups for a range of brute-force attacks on symmetric-key
cryptography, including collision attacks and preimage attacks.

The algorithm operates entirely on a quantum computer, utilizing qubits, superposition
and a quantum oracle that accesses the function f . Grover’s algorithm is useful in many
other areas than cryptography (e.g. creation of medicines by speeding up complex problems
that involve how proteins fold) but its main problems are the overhead due to quantum
operations because the achieved quadratic speedup is too modest to overcome the large
overhead of quantum computers. Moreover, the computations have not been paralleled in
quantum computers, meaning that the 264 steps required to find an AES-128 secret key
must be performed sequentially, which demands a considerable amount of time.

3.2 Transition to Post-Quantum Cryptography
Post-quantum cryptography has been designed to be secure against the quantum threat.
However, as outlined in [15], transitioning to quantum-safe cryptography is an arduous
and delicate process because it is necessary to establish standards, migrate legacy systems,
develop and deploy hardware and software solutions. Any organization that wants to
complete the transition to quantum-safe cryptography for a particular cyber-system must
consider three parameters:

1. Tshelf−life: number of years in which the information must be protected by the cyber-
system. This is a business decision that the company must take.

2. Tmigration: number of years required to properly migrate the system to a quantum-safe
solution.

3. Tthreat: number of years before there is the possibility to break the quantum-vulnerable
system. It is difficult to assume.

If the sum of the migration time and of the shelf-life time is greater than the threat
timeline, the organization may not be able to protect its assets for the entire shelf-life
time against quantum threats. So the difference between Tthreat and Tshelf−life is the
maximum Tmigration possible, i.e., the maximum time in which organizations must organize
the transition.

3.3 CRYSTALS-Kyber
In July 2022, NIST announced which post-quantum algorithms they will standardize by
2024 [16]. CRYSTALS-Kyber algorithm has been chosen for public-key encryption and key
establishment, while CRYSTALS-Dilithium, FALCON and SPHINCS+ have been chosen
for digital signature. This section provides an in-depth exploration of Kyber in the context
of key establishment.

Kyber [1] belongs to lattice-based family of post-quantum algorithms and is designed
to be a post-quantum secure Key Encapsulation Mechanism (refer to section 2.1), based

24

3.3 – CRYSTALS-Kyber

on solving the Learning-With-Errors-and-Rounding problem in module lattices (MLWER).
Kyber employs a Public Key Encryption scheme in which the plaintext cannot be specified
because it is generated as a random key during the encryption process, and it is interactive
because encapsulation can be performed only after having received the input from the other
party. The term "CRYSTALS" stands for "CRYptographic SuiTe for Algebraic Lattices",
and represents the package submitted to NIST for post-quantum standardisation.

Kyber can be effectively integrated into TLS protocol (refer to section 2.4), operating
in hybrid mode, coexisting with pre-quantum cryptographic methods.

3.3.1 Key Encapsulation Mechanism functions
Consider the message m that is 256-bits long, the corresponding ciphertext ct, the 256-bits
long shared secret ss result of the key agreement, the public key pk and the private key sk,
two random oracles H and G, respectively SHA256 and SHA512 and the KDF SHAKE-
256. The size of the ciphertext depends on the specific Kyber version in use. The following
pseudocodes of Kyber functions follow the IETF "Kyber Post-Quantum KEM" draft [28].

The Pseudocode 1 is related to KeyGen function, used to generate a Kyber keypair.
Starting from the first 32 bytes of a seed of 512 bits named seed, the function InnerKeyGen
deterministically produces a public key pk - which will be provided as the output of KeyGen
function - and a private key cpaSk. The private key output of the algorithm is sk and it
is the concatenation of the private key cpaSk, the public key, the SHA3-256 digest of the
public key and the last 32 bytes of the seed.

Algorithm 1 KeyGen
seed: 64 bytes
z = seed[32:]
(pk, cpaSk) = InnerKeyGen(seed: seed[:32])
h = H(pk)
sk = cpaSk || pk || h || z
return (pk, sk)

In Pseudocode 2, Encaps algorithm is described. It receives in input the public key pk
generated with KeyGen function. Firstly, the seed of 256 bits is randomly generated, then

Algorithm 2 Encaps
seed: 32 random bytes
m = H(seed)
KBar = G(m || H(pk))[:32]
cpaSeed = G(m || H(pk))[32:]
ct= InnerEnc(message: m, key: pk, coins: seed)
ss = KDF(KBar || H(ct))
return (ct, ss)

the message m to encrypt is obtained as the SHA3-256 digest of the seed. The ciphertext ct
is computed with the function named InnerEnc, which takes the seed and deterministically

25

Post-Quantum Cryptography

encrypts the message m using the key pk. Then, the shared secret key ss is the output
of the KDF that receives the concatenation of KBar and the SHA3-256 digest of the
ciphertext ct. KBar is the first 256 bits of the SHA3-512 digest of the concatenation of m
with the SHA3-256 digest of the public key pk.

The Decaps function (pseudocode 3) receives in input the private key sk and the ci-
phertext ct, and produces the shared secret key ss. The Kyber private key sk has been
computed with KeyGen, so it is the concatenation of cpaSk, pk, h and z. In order to
perform decapsulation, it is necessary to extract these values from sk, and this is made
possible by their fixed lengths, which depend on the specific Kyber version. On this pur-
pose, the parameters n and k, defined in Table 3.1, are used. Once cpaSk, pk, h and z
variables are set, the function InnerDec decrypts the received cyphertext with the private

Algorithm 3 Decaps
cpaSk = sk[: 12*k*n/8]
pk = sk[12*k*n/8 : 24*k*n/8+32]
h = sk[24*k*n/8+32 : 24*k*n/8+64]
z = sk[24*k*n/8+64 :]
m = InnerDec(ciphertext: ct, key: cpaSk)
KBar = G(m || h)[:32]
cpaSeed = G(m || h)[32:]
ct2 = InnerEnc(message: m, key: pk, coins: cpaSeed)

ss =
{︃

KDF (KBar||H(ct)) if ct == ct2
KDF (z||H(ct)) otherwise

return ss

key cpaSk, producing the message m. Then, KBar and cpaSeed and the ciphertext ct2 are
computed in the same way as the other peer did through Encaps function. If the received
ciphertext is equal to the computed one, also the message in clear m is equal to the one
owned by the other peer, and it follows that also KBar is the same, so the current peer
can compute the shared secret key ss with the same formula used by the other peer, being
sure that the key will be the same. Otherwise, if the ciphertexts differ, the KEM failed
and the computed ss will be different to the one owned by the other peer.

3.3.2 Key exchange
Kyber key exchange process is depicted in Figure 3.1:

1. In the initial step, the first peer P1 generates a fresh key-pair and transmits the
resulting public key pk to the second peer P2.

2. Upon receipt of the public key, P2 encapsulates pk to derive the ciphertext and the
shared secret key.

3. Subsequently, P2 sends the ciphertext to P1, who, in order to extract the shared
secret key, decapsulates the ciphertext, effectively decrypting it using the private key
generated during the first step.

26

3.3 – CRYSTALS-Kyber

Figure 3.1. KYBER key exchange. Source: [1]

4. At this point, both peers possess the shared secret key, enabling them to securely
exchange encrypted data.

3.3.3 Authenticated key exchange
Kyber key exchange scheme shown in Figure 3.1 is unauthenticated, so it protects against
passive adversaries because they cannot deduce anything about the traffic they see, but
a MITM (Man-In-The-Middle) attack is still possible. As depicted in Figure 3.2, when
the first peer transmits the public key pk, an attacker is able to intercept and block it in
reaching the second peer.

Figure 3.2. Kyber key exchange - MITM attack.

The attacker may generate and then transmit a public key pk_a to P2. P2 uses the
received public key to compute the ciphertext and the shared secret key via Encaps function
and sends back the ciphertext c′ to P1. Again, the attacker intercepts the ciphertext, blocks

27

Post-Quantum Cryptography

it in reaching the first peer and computes the ciphertext and the shared secret key using
the public key pk intercepted from P1. Then, the attacker sends the computed ciphertext
c to P1, P1 decapsulates the received ciphertext with the computed secret key and obtains
the key. Obviously, the keys known by P1 and P2 are different and the attacker in the
middle will be able to read the traffic during the transmission.

A solution to protect against MITM attacks is the authenticated key agreement, shown
in Figure 3.3, where both peers have their long term keypair used for authentication. They
are static keys employed for a relatively long period of time and in many instances of the
cryptographic key-establishment scheme. The static keys are meant to be in long term cer-
tificates, so they are not exchanged out-of-band (OOB) but they are present within Public
Key Certificates (PKCs). Thanks to static keys, MITM attacks are not possible because

Figure 3.3. Kyber authenticated key exchange. Source: [1]

both shared secret keys K1 and K2 - respectively computed performing the encapsulation
using the static public key of P1 and P2 - would be different if an attacker were in the
middle. Moreover, the hashes would be different and the symmetric encryption/decryption
would not lead to the right result. All the keys (K1, K2, K ′

1, K ′
2, K, K ′) are necessary to

guarantee that the two peers are really who they claim to be and to guarantee integrity of
the exchanged data (pk, c2, c, c1) because only having K equal to K ′, K1 equal to K ′

1 and
K2 equal to K ′

2, authentication and integrity are guaranteed and the two peers P1 and P2
will be able to encrypt and decrypt the exchanged application data without anyone else
being able to read their communications.

28

3.4 – KEMTLS-PDK

3.3.4 Parameters
In Table 3.1, there are Kyber parameters. Kyber512 has a NIST security level 1 and a
classical equivalent resistance of AES-128. The integer n indicates the number of bits of
entropy of the keys to encapsulate, i.e. the length of the plaintext provided in input to
the encryption function. The integer k is a value selected to fix the lattice dimension as
a multiple of n. The main mechanism in Kyber to scale security and, as a consequence,
efficiency, to different levels consists of changing k value. In Kyber variant, the number
that follows the word "Kyber" is the result of the multiplication between n and k. The
secret keys, from Kyber512 to Kyber768 and from Kyber768 to Kyber1024 differ by 768
bytes and the corresponding public keys differ by 384 bytes.

Table 3.1. Kyber parameters

secret key
(bytes)

public key
(bytes)

ciphertext
(bytes)

n
(bits)

k

Kyber512 1632 800 768 256 2
Kyber768 2400 1184 1088 256 3
Kyber1024 3168 1568 1568 256 4

As many post-quantum KEMs, Kyber has the problem of the size of keyshares, that
compared to classical KEMs is big. The keyshare is the public key sent by the first peer
to the second one during the key exchange, in order to generate the shared secret key. For
example, in Kyber512, the data over the wire is the ciphertext and the public key, i.e.,
1568 bytes, while in X25519 it is twice the Public key, i.e., 64 bytes. In the hybrid versions
of Kyber, both public keys of Kyber and of X25519 are taken. For example, in the hybrid
Kyber512, the keyshare is 832-bytes long because it takes the public key of Kyber512 (i.e.,
800 bytes) and the public key of X25519 (i.e., 32 bytes). The length of the keyshare is
a serious problem because a ClientHello message will just barely fit in a network packet
so some TLS implementations may crash on the larger keyshare messages which contain
bigger post-quantum keys. Another serious problem is fragmentation because fragmenting
a ClientHello of TLS handshake into two initial packets would lead to performance degra-
dation because putting packets together is not free, it requires to keep track of the partial
messages around.

3.4 KEMTLS-PDK
Web applications secured with the TLS 1.3 protocol (refer to section 2.4) face quan-
tum threats. The vulnerabilities arise from the protocol’s mechanisms for confidential-
ity and integrity, which involve Authenticated Encryption with Associated Data (e.g.,
ChaCha20_Poly1305 or AES128GCM). As discussed in section 3.1, quantum attacks based
on Grover’s algorithm become feasible when the symmetric key is shorter than 256 bits. The
key exchange in TLS 1.3 relies on the X25519 Elliptic Curve Diffie-Hellman protocol, which
is based on the discrete logarithm problem for elliptic curves. Unfortunately, this choice is
susceptible to quantum attacks based on Shor’s algorithm. Moreover, the digital signature

29

Post-Quantum Cryptography

algorithms RSA or ECDSA, integral to TLS certificates for website authentication, are also
vulnerable to quantum attacks based on Shor’s algorithm. These foundational aspects of
TLS 1.3 make it susceptible to compromise in a quantum computing environment.

The KEMTLS-PDK protocol [26], an evolution of the KEMTLS protocol [27], represents
a post-quantum solution with pre-distributed keys. It adopts a signature-free approach,
employing a post-quantum Key Encapsulation Mechanism (KEM)-based key exchange and
authentication. The primary objectives of KEMTLS-PDK are:

• Provide quantum-resistant TLS, ensuring confidentiality and authentication even in
the presence of quantum threats.

• Optimize computational costs, reducing the number of round trips, and minimizing
bandwidth requirements.

Implemented by modifying Rustls TLS library [24], KEMTLS-PDK enhances the round-
trip efficiency compared to its predecessor, KEMTLS. In the protocol, both peers possess
a static KEM keypair, and the client has prior knowledge of the server’s static KEM public
key. The long-term KEM keys used by the protocol are authenticated by CAs digital
signatures (refer to section 2.3.1).

Noteworthy aspects of KEMTLS-PDK include:

• Implicit Client Authentication: client authentication is implicit, meaning that the
computed shared secret is only known by the intended client.

• Explicit Server Authentication: server authentication is explicit, ensuring the partic-
ipation of the intended server. This authentication occurs one round trip later than
the first application data sent by the client.

• Downgrade Resilience: KEMTLS-PDK is designed to resist downgrade attacks, where
adversaries attempt to force the use of a vulnerable protocol version by sending fake
server responses. Full downgrade resilience is achieved at the end of the handshake,
providing the client with assurance regarding the selected algorithms, as explicit server
authentication occurs before the client transmits application data.

3.4.1 Handshake with proactive authentication
In Figure 3.4, KEMTLS-PDK handshake with key derivation schedule and proactive client
authentication is presented. Proactive client authentication is possible when the client
already knows that the server requires mutual authentication, so the client sends its cer-
tificate in advance. It is important to note that the provided Figure 3.4 differs from the
one presented in "More efficient post-quantum KEMTLS with pre-distributed public keys"
Paper [26] because during the study of the protocol, an error was identified in the hand-
shake and communicated to the researchers working on KEMTLS-PDK. They provided
the corrected version, incorporated into the current Master’s Thesis and taken from Thom
Wiggers’ PhD Thesis [41].

The protocol unfolds through multiple stages to establish a session, with each stage
establishing a shared secret indistinguishable from a random key. The keys generated to
encrypt subsequent parts of the handshake serve internal purposes, and the final session

30

3.4 – KEMTLS-PDK

Figure 3.4. KEMTLS-PDK handshake. Source: [41]

31

Post-Quantum Cryptography

key is employed for authenticated encryption of application data. Initiating the handshake
after the exchange of TCP SYN and TCP SYN-ACK, the client generates the ephemeral
keypair using the secure KEM with ephemeral key exchange KEMe to provide forward
secrecy. Subsequently, the client encapsulates the server’s long-term public key pks using
KEMs, a secure KEM with implicit authentication. The algorithms utilized by the two
KEMs can be the same, and KEMs can be hybrid, combining post-quantum cryptography
and classical cryptography.

The first client-to-server handshake message is the ClientHello. It contains the ephemeral
public key pke, the client’s nonce rc used for freshness, the ciphertext cts generated through
the encapsulation performed in the previous step, and the supported algorithms for key
exchange and authenticated encryption.

Upon receiving the ciphertext, the server uses its owned long-term KEMs private key
sks to perform decapsulation, obtaining the first shared secret sss. Both peers execute the
Extract and Expand HKDF functions. The former, a randomness extractor, takes a salt
(used for the current secret state) and the input key material (used for new shared secrets),
while the latter, a pseudorandom function with variable length, receives in input the secret
key, a label, the string of the hash of the transcript of messages, and the desired length
of the output key (which is omitted in Figure 3.4). A transcript is the concatenation of
consequent TLS messages and the ∅ symbol is used to indicate an empty value. The hash
function used by the HKDF is collision-resistant, ensuring pseudorandomness in both salt
and input keying material arguments.

The computed shared secret of the first stage is ETS, enabling implicit authentication
of the server, as its computation relies on the server’s long-term keypair, allowing only the
legitimate server to decrypt messages encrypted with ETS.

The client sends its certificate, which contains its long-term public key, encrypted using
ETS. Then, both peers compute dES with the HKDF Expand function; the server en-
capsulates the received ephemeral public key pke and transmits the ServerHello message,
that contains the computed ephemeral ciphertext cte, server’s nonce rs and the algorithms
selected from the client’s proposal.

The client computes the ephemeral shared secret sse by decapsulating the received cte

with the ephemeral private key ske computed in the first step. Following these procedures,
both peers can compute the shared secrets of stages 2 and 3, namely the client handshake
traffic secret CHTS and the server handshake traffic secret SHTS, along with the derived
handshake secret dHS.

The final part of the handshake depends on client’s long-term keypair. The server
transmits a message containing protocol extensions encrypted with SHTS and the en-
cryption, performed with SHTS, of the ciphertext computed with the encapsulation of
client’s long-term public key.

The client computes the shared secret ssc decapsulating the received ctc with its long-
term private key. These steps achieve mutual authentication in a single round trip, with
implicit authentication for both peers.

Both peers compute the master secret MS, along with the finished keys fkc and fks,
which are employed to authenticate the handshake. The server sends the ServerFinished,
which contains the Hash-based Message Authentication Code (HMAC) used to authenticate
the handshake transcript, computed with fks and encrypted with SHTS. The client
verifies the ServerFinished decrypting it, computing the same HMAC and comparing the

32

3.4 – KEMTLS-PDK

received value with the computed one. If the computed HMAC differs from the received
one, the client aborts the handshake. Otherwise, the client is assured that both peers
have the same transcript (which includes negotiation messages), guaranteeing that KEMs
for ephemeral key exchange, public key authentication, authenticated encryption and hash
function algorithms are the wanted ones. The same procedure is followed for ClientFinished
message, and if verification is successful, the session key is computed with HKDF Expand
function, utilizing MS key, "c ap traffic" label and CH..CF transcript.

Replay attacks are possible for Stage 1 keys because an attacker could replay the same
ClientHello message several times, but the subsequent stages are replay-protected.

3.4.2 Comparison with TLS 1.3
When comparing TLS 1.3 with KEMTLS and KEMTLS-PDK, several considerations arise:

• Authentication, Integrity, and Confidentiality: both KEMTLS and KEMTLS-PDK,
like TLS 1.3, provide robust authentication, integrity, and confidentiality.

• Bandwidth Optimization: KEMTLS and KEMTLS-PDK stand out by requiring less
than half of the bandwidth compared to TLS 1.3. This reduction results from mini-
mizing the amount of data transmitted during the handshake process.

• Trusted Code Base: KEMTLS and KEMTLS-PDK contribute to a reduced trusted
code base, enhancing overall security.

• Speed : the number of server CPU cycles spent on asymmetric cryptography is sig-
nificantly reduced, approaching a remarkable 90% reduction [27].

• Offline Deniability: both KEMTLS and KEMTLS-PDK have offline deniability, mak-
ing it impossible to distinguish between a genuine and a forged transcript. This prop-
erty means that the protocols lack the non-repudiation security property present in
TLS 1.3.

• Transmission of Encrypted Data: while TLS 1.3 allows the transmission of encrypted
and authenticated data from the server to the client starting with the first response
message of the handshake, KEMTLS and KEMTLS-PDK initiate the transmission
of the first application data in the client-to-server message flow. This design choice
reduces the time taken for the handshake before the client can send application data.

33

34

Chapter 4

Cryptography in Space
Systems

In order to establish a comprehensive foundation for the current Master’s thesis, this chap-
ter provides a contextual overview of the Space domain. The discussion begins with a
broad exploration of the Space domain, laying the groundwork for a deeper understand-
ing of the challenges involved in securing space-based systems. Following the contextual
introduction, the state-of-the-art in cryptography specifically tailored for space systems is
analysed, highlighting the current cryptographic techniques and technologies employed in
space systems. Building upon the examination of the current state-of-the-art, the cryp-
tographic goals for the future are outlined. Understanding these objectives is crucial for
placing the thesis work within the broader framework of European initiatives and aspi-
rations in the realm of Space security. To provide a practical example of ongoing efforts
to address cryptographic challenges in the Space domain, the last section of the chapter
offers a high-level overview of an active ESA project, focused on securing ground-to-space
communications.

4.1 Cybersecurity for Space Systems
The Space domain encompasses the essential elements required for the functioning of space
systems and the delivery of space-based services. A space system is composed by vehicles
and infrastructure designed to operate within the space environment. A satellite, as a
fundamental operational asset, is composed of a platform, known as the bus, and one or
more payloads. The bus represents the physical infrastructure of the satellite, incorporating
mechanisms and subsystems for various functions, including attitude determination and
control, power systems, propulsion, thermal control, telemetry, tracking and command
communications, and processing. On the other hand, the payload comprises mission-specific
components that are distinct from the overall satellite operations.

35

Cryptography in Space Systems

4.1.1 High-Level Architecture of a Space System
Figure 4.1 illustrates the primary components of the high-level architecture of a space
system. The Space segment encompasses space infrastructure not hosted on Earth [8],
housing satellites, probes (small spacecraft without crew), and space stations, such as the
International Space Station (ISS). Conversely, the Ground segment constitutes the space
architecture situated on Earth, encompassing ground stations, operations centers (e.g., the
European Space Operations Centre), and the ground network. While not explicitly illus-
trated in Figure 4.1, the Link segment plays a crucial role in the space system architecture.

Figure 4.1. High-level architecture of a space system. Source: [22]

This segment encompasses communication links between the ground and space segments.
These links can be categorized as follows:

• Uplink: Communications originating from the ground and directed towards satellites.

• Downlink: Communications originating from satellites and directed towards the ground.

• Crosslink: Communications occurring between satellites.

These communication links operate using radio frequency or free-space optical networks.
The User segment constitutes all interfaces and infrastructures that expose space system

services to consumers.

36

4.1 – Cybersecurity for Space Systems

4.1.2 Transformative Applications of Space Systems
Satellites, initially designed to support national security and telecommunications, have
undergone a profound evolution. In the contemporary landscape, the utilization of space-
based systems extends far beyond their traditional roles. The increasing affordability of
deploying satellites for enterprise use cases has sparked a technological revolution. Various
stakeholders, including governments, international organizations, technical authorities, and
service consumers/providers, are steering the Space domain towards heightened strategic
significance in defense and security contexts [40]. Space systems now play pivotal roles in
border and maritime surveillance, humanitarian operations, telecommunication networks,
verification of military agreements, and support of defense operations [20]. As the re-
liance on space systems grows, so does the concern for their cybersecurity. The absence
of industry-wide standards poses a significant challenge, given that satellite systems op-
erate in one of the most hostile environments. Threats range from natural events such
as disasters, space debris, space weather, and atmospheric disturbances to cyber-attacks
conducted by humans.

4.1.3 Cyber-attacks against Space Systems
As many civilian space systems lack adequate protection, cyber-attacks targeting them
often do not require high levels of expertise. When a space system becomes a target, the
attack may focus on the spacecraft itself, its ground infrastructure, the user segment, or
the data links between spacecraft and ground segment. Potential targets encompass the
hardware and embedded software of the satellite, including onboard software, transmitted
data, and the ground network.

Various types of cyber-attacks against satellites have been identified [12]:
• Side Channel Attack: a passive attack that does not physically damage the spacecraft.

Instead, it observes electromagnetic radiation from the device, attempting to deduce
the secret key.

• Jamming Attack: an electronic attack challenging to execute but easy to trace. The
attacker sends de-authentication signals in an effort to disrupt communication be-
tween the transmitter and receiver. Targets may include sensor data or guidance
control.

• Spoofing Attack: a popular and easy attack where the attacker intercepts data packets,
seeking to decipher their content. The targets may encompass sensor data or guidance
control.

• Distributed Denial Of Service (DDoS) Attack: in this attack, a large volume of data
is sent to the victim, overloading it and compromising its operational performance.
Targets may include guidance or sensors.

• Hijacking Attack: the attacker infiltrates the satellite ground station to gain full
control over the satellite.

• Replay Attack: the attacker intercepts valid transmitted data packets containing au-
thentication or access control information, subsequently repeating or delaying their
transmission to gain unauthorized access or generate unauthorized effects.

37

Cryptography in Space Systems

The Mission Control Software (MCS) is typically the primary target of cyber-attacks, as
gaining control over spacecrafts is a key objective. The repercussions of a successful cyber-
attack against a space system can range from reversible to irreversible, causing damage,
disruption, or the destruction of parts or of the entire system. Confidential and sensitive
data may be exposed, the attacker might gain physical control of the satellite through
remote intrusion of ground stations, and the satellite’s trajectory could be altered, leading
to collisions with other satellites. Additionally, malicious code injection and corruption
of sensor systems, data breaches, and in extreme cases, loss of human lives in crewed
missions, are potential consequences. Notably, spoofing is a highly effective attack, being
undetectable and based on weak encryption. Therefore, the implementation of stronger
encryption algorithms is imperative.

4.1.4 Countermeasures
Space systems, including commercial entities, are deemed critical infrastructures suscepti-
ble to vulnerabilities that could lead to the exposure of sensitive data. To mitigate the risks
posed by vulnerabilities, implementing robust security measures is of utmost importance.
Various cybersecurity measures for space systems include:

• Authentication and Access Control Mechanisms: implementing mechanisms to au-
thenticate actors and data and control access helps safeguard against unauthorized
intrusions.

• Intrusion Detection Systems (IDSs) and Intrusion Prevention Systems (IPSs): these
systems play a crucial role in identifying and preventing unauthorized access or ma-
licious activities within the space systems.

• Secure Communication Protocols and Encryption Techniques: fundamental for se-
curing data, technologies, and human lives, especially in the case of crewed space
systems.

• Encryption and Protection Systems: implementing strong encryption and protection
systems is essential to provide data confidentiality and integrity.

• Hardened and Continuously Monitored Infrastructures: infrastructures should be for-
tified and subject to continuous monitoring to detect and counteract potential threats.

• Onboard Software and On-Ground Software Continuously Updated: regular updates
to both onboard and on-ground software are critical to patch vulnerabilities and
enhance overall system security.

Ensuring the security of the Ground segment is paramount as it serves as the sole interface
between space assets and Earth. The Space segment, being physically challenging to repair
if compromised, must be protected. Additionally, securing the Link segment is crucial to
guarantee confidentiality, integrity, and availability.

Europe is urgently prioritizing the enhancement of space asset and data security to
prevent the weaponization and geopoliticization of satellite systems. This focus arises from
the understanding that security on Earth is intertwined with security in Space, particularly
with satellite communications emerging as a valid alternative to terrestrial Internet data

38

4.2 – State-of-the-Art in Cryptography for Space Systems

transmission. While military satellites already heavily employ encryption, authentication
mechanisms, and integrity checks to resist cyber-attacks, civilian satellites, unfortunately,
lag behind in proper security measures. In many cases, they are inadequately secured
or lack security altogether. Consequently, the integration of cybersecurity practices with
technological progress is indispensable.

4.2 State-of-the-Art in Cryptography for Space Sys-
tems

As emphasized in section 4.1.3, the use of weak encryption techniques poses a significant
risk, facilitating data interception and decryption for potential attackers. In addition,
insecure protocols leave systems vulnerable to data modification and theft.

Space agencies, including the European Space Agency, depend on cryptographic re-
search and standardization from the civilian domain for implementing cryptographic al-
gorithms in future civilian space missions. Existing civilian space systems with cryptog-
raphy heavily rely on symmetric cryptographic primitives and hashes. For space missions
requiring data, voice, and video confidentiality, integrity, and authenticated encryption,
cryptographic measures are crucial in the following areas:

• Telecommand (forward space link): used for communications from the ground to the
spacecraft.

• Telemetry (return space link): used for communications from the spacecraft to the
ground segment.

• Across the ground data network.

Depending on the specific system, cryptography can be applied at various layers, including
the Application layer (e.g., IETF protocol TLS, see section 2.4), Network layer (e.g., IPSec),
Data Link layer (e.g., CCSDS Space Data Link Security, i.e., SDLS protocol), and even
the physical layer (e.g., bulk encryption, i.e., combined transmissions from a multiplexer
encrypted all together). Cryptography can be applied at one or many of these layers.

However, many systems lack cryptography due to challenges in updating, long life-
cycles, and difficulty keeping pace with technological advancements. This presents an
urgent problem as the absence of data confidentiality and security disruptions in terms
of data integrity, authentication, and confidentiality can have severe consequences during
transmission, leading to data manipulation, corruption, unauthorized access, disclosure of
sensitive data, mission failures, and even loss of human lives in crewed missions.

The Consultative Committee for Space Data Systems (CCSDS) published Blue Book
[31], offering recommended standards for security protocols at physical layer (Proximity-
1 Space Link Protocol) and data link layer (SDLS protocol). Authenticated encryption
algorithms are recommended for space systems by CCSDS and ESA due to their ability to
provide confidentiality, integrity, authentication, and high-speed communications.

According to CCSDS standard for Cryptographic Algorithms [32]:

• Existing CCSDS implementations that have cryptography use AES-128 algorithm.

39

Cryptography in Space Systems

• Future implementations are expected to adopt AES-256, with Galois Counter Mode
(GCM) if additional data integrity is required.

Most space systems favor symmetric encryption for its computational efficiency and mem-
ory usage. Key sharing through secure channels is feasible because space systems are often
isolated.

For authentication, CCSDS recommends solutions such as HMAC with SHA-256 for
hash message-based authentication, Cipher-based Message Authentication Code (CMAC)
with AES-128/192/256 for cipher-based authentication, Galois Message Authentication
Code (GMAC) with AES-128/192/256 for cipher-based authentication requiring authen-
ticated encryption only for authentication, and RSA-2048/4096, DSA, ECDSA for digital
signature-based authentication.

CCSDS standards also foresee the use of asymmetric cryptographic primitives to en-
hance flexibility for federated operations, adopt digital signature based authentication,
improve scalability (essential in new space, i.e. private space industry, and for projects
with large constellations, which are networks of several satellites similar in functions and
interconnected to each other working for the same mission), and foster interoperability
with terrestrial systems.

Since data encryption and authentication are necessary, key establishment is crucial.
For ground-to-satellite communications, keys are often pre-deployed, with a good practice
of refreshing keys for each session. An alternative approach is key exchange offering forward
secrecy. For satellite-to-satellite communications, key establishment can occur indirectly
via ground stations, but a preferred method involves using inter-satellite links for key
exchange, providing better scalability.

4.3 Goals in Cryptography for Space Systems
As detailed in section 3.1, Shor’s algorithm poses a threat to nearly all classical public
key cryptography, including RSA and elliptic curve cryptography. Additionally, Grover’s
algorithm can compromise symmetric cryptography which utilises keys shorter than 256
bits, such as AES-128 keys. This threat extends not only to current space systems but
also to future ones, as they are anticipated to use algorithms like RSA for key agreement,
encryption, and signatures that lack quantum resistance (refer to section 4.2). With the
expected advent of widely available quantum computers within the next 10-15 years, it is
crucial to recognize them as a serious threat and initiate the migration of systems, consid-
ering the enduring nature of space systems. Given all the needs identified in this chapter,
it is necessary to start integrating Post Quantum Cryptography in space systems, adopting
hybrid solutions that incorporate both classical algorithms to ensure resilience against con-
ventional computers and PQC algorithms which will provide quantum resilience in the long
term. The European Space Agency (ESA) has set the objective of securing all the markets
depicted in Figure 4.2, aiming to reduce vulnerabilities and enhance cyber-resilience. An
ESA goal is to actively support the development of secure satellite communication prod-
ucts and systems. This support extends to providing best practices, facilities, and a robust
cyber framework. ESA acknowledges the strategic value of cybersecurity, leveraging it as
a fundamental business asset for the space industry.

40

4.4 – Overview of an active ESA Project: Hardware Security Module As A Service (HSMAAS) - MO

Figure 4.2. ESA space markets that require cybersecurity. Source: [5]

4.4 Overview of an active ESA Project: Hardware
Security Module As A Service (HSMAAS) - MO

Hardware Security Module As A Service (HSMAAS) - MO [38] is a component of a col-
laborative project between the European Space Agency, CGI, and Skudo companies. This
initiative prototypes end-to-end data encryption for ground-to-space communications at
the CCSDS Mission Operations Message Abstraction Layer (MO/MAL) [33], employing a
TLS-inspired handshake and encryption mechanism. The MO/MAL layer defines rules re-
garding the syntax of high-level application MO services, the semantics of MO interaction
models, and the synchronization of communications between entities. The MAL specifi-
cation provides a standard abstract Application Programming Interface (API), making it
a Platform Independent Model (PIM) for defining MO services. To materialize concrete
services, a language-specific API binding and a technology binding for message protocol
encoding/decoding are utilized. MAL ensures standardization of data types, message head-
ers, allowed sequences of message exchange, Quality of Service (QoS), and access control.
The implementation of encryption at the MO/MAL layer holds the potential to enhance
the security of a broad spectrum of space missions.

Following the TLS protocol concept (refer to section 2.4), asymmetric encryption is
utilized solely in key agreement, while symmetric encryption is performed with derived
symmetric data encryption keys to encrypt session data. To validate the implementation, a
ground-to-space demonstration involving the OPS-SAT satellite was successfully conducted
[37].

Entities involved in the HSMAAS MO work include Ground end nodes (consumers)
and the Satellite (provider). Specifically, Mission Operations (MO) applications, respon-
sible for operating spacecraft and their payloads, seek secure interactions. MO services
encompass end-to-end operations on the ground or in a spacecraft, handling tasks such
as monitoring and controlling spacecraft and payloads, delivering mission data, managing
onboard software, analyzing spacecraft performance, determining orbit and attitude, plan-
ning and executing mission operations, and preparing predictions and maneuvers. MO
services framework is a software platform used to experiment with ground-to-space PKI,
it is standardized by CCSDS [34] and places into Application and Network layers of the

41

Cryptography in Space Systems

OSI model.
The project’s output includes the development of Secure MAL, the software responsible

for handshake and encryption at the Message Abstraction Layer (MAL). Secure MAL
contains two new Java components [36]:

• Secure Access Control (SAC): an Access Control interface for MO applications that
initiates key agreements and performs MAL message payload encryption. This en-
cryption ensures secure communications, irrespective of the underlying transport tech-
nology. SAC queries the security module to determine the existence of a secure session,
triggering an automatic handshake if necessary.

• MO Security Service Consumer/Provider : a MO service specification in terms of
MAL that does the handshake using MO Security Service Interface.

Secure MAL, packaged as a JAR, becomes a dependency for MO applications and can
be utilized in both MO consumer and MO provider applications.

One notable security enhancement is the applicability of Secure MAL to any MO ap-
plication, including existing ones, with any MO transport binding. As MAL messages
are transformed to transport technologies like TCP/IP, there is no need to alter the MO
framework, and key agreements can be performed over unsecured MO services.

42

Chapter 5

Design and implementation of
the KEMTLS-PDK-based
architecture

Imagine a scenario of communication between a Ground node, representing a Mission
Operations (MO) application on Earth, and a Space node, which is a MO application
aboard a spacecraft. The exchange of sensitive data lacks confidentiality as it is transmitted
without encryption, relying on the assumption that nobody would attempt to intercept the
traffic. Enter Kat, a curious individual turned attacker, who successfully intercepts this
unencrypted traffic, posing potential threats and consequences, as discussed in Chapter 4.

Consider a subsequent scenario, where the Ground and Space nodes decide to enhance
their security by adopting the widely used TLS 1.3 protocol. However, in this evolving
landscape, Kat has upgraded her capabilities and now possesses a quantum computer,
raising new challenges for the security of their communications.

The Master’s thesis work addresses the latter scenario by proposing a solution. Con-
ducted during the internship as a cybersecurity engineer at the European Space Operations
Centre (ESOC) of the European Space Agency in Darmstadt, the project builds upon an
existing project undertaken by ESA in collaboration with CGI and Skudo (see section 4.4).
Trying to leverage the existing infrastructure and architecture, the objective is to replace
the TLS 1.3-based handshake with a Post-Quantum Cryptography solution, in order to
assess the feasibility of implementing a PQC protocol in the context of space systems. The
current chapter begins by providing a detailed description of the designed architecture.
Subsequently, it delves into the KEMTLS-PDK-based handshake, highlighted key aspects
of the implementation. At the end, the significant challenges and technical difficulties
encountered throughout implementation phase are examined.

5.1 Architecture
In Figure 5.1, the designed architecture is depicted. It involves three entities that are the
Ground end node, which roles as the consumer, the Space end node, which acts as the

43

Design and implementation of the KEMTLS-PDK-based architecture

provider, and the Ground Public Key Infrastructure. They are described in the following
subsections.

Figure 5.1. Designed architecture

5.1.1 Ground end node
The Ground end node is composed of one or more Mission Operations client Security App,
where the word "Security" has been already added by the HSMAAS - MO project after the
implementation of the Secure MAL (see section 4.4). This MO application interacts with
node’s Software Security Module (SSM) via PKCS#11 interface [21]. PKCS#11 is used
to create and manipulate cryptographic tokens like Security Modules. The SSM contains:

44

5.1 – Architecture

• Ground node X.509 PKC : it is the node’s public key certificate which contains the
Ed25519 public key used by whoever wants to verify a digital signature performed by
the node.

• Root X.509 PKC : it is the public key certificate of the Root Certification Authority
that generated the Ground node X.509 PKC.

• Kyber identity keypair : as described in section 5.2.2, the PQC protocol adopted for
establishing secure sessions uses Kyber512 algorithm for key establishment. The
Kyber identity keypair is the long-term keypair that is used with KEMs (refer to
section 3.4.1) during the handshake for implicit authentication of the consumer.

• Ed25519 SK : it is the Ed25519 private key associated to the public key contained in
Ground node X.509 PKC and used to digitally sign documents.

• Space node Kyber PK : KEMTLS-PDK protocol is used, so the consumer already
knows the Kyber long-term public key of the provider, and it stores it into the SSM,
using it during the handshake.

• OCSP Resp X.509 PKC : it is the public key certificate of the OCSP Responder that
signs the OCSP staples for client’s certificate.

• Session keys: it indicates all the 256-bits long keys that have been established af-
ter the successful conclusion of the handshakes to establish secure session with MO
applications on the Space end node. They are used to encrypt/decrypt data with
AES-256-GCM-no padding algorithm.

5.1.2 Space end node
The Space end node provides MO server Security Apps to consumers on ground. These MO
applications interact with the SSM that is onboard, using PKCS#11 interface. While in
HSMAAS - MO project the space end node uses a HSM (refer to section 2.5), for this project
SSMs were adopted for both peers because no known HSMs implement Kyber algorithm.
As the Ground end node, the Space end node SSM encompasses the node’s X.509 public
key certificate, which contains the Ed25519 public key, the Certification Authority public
key certificate, the PKC of the OCSP Responder which signed the OCSP staples that the
Space end node has to verify, the node’s long-term Kyber keipar, used for identifying the
node during the handshake, the private key corresponding to the public one contained in
the node’s PKC and the session keys established with KEMTLS-PDK-based handshake.

5.1.3 Ground Public Key Infrastructure
When the Ground end node and the Space end node want to ask for a X.509 public key
certificate, they send a Certificate Signing Request (CSR) to a Certification Authority. This
Certification Authority (CA) is part of the Ground Public Key Infrastructure (PKI), that
manages the generation, revocation and verification of certificates. The CA has its own
certificate (Ground and Space node keep a copy of it within their SSM) that is self-signed
because the CA is a root CA, and has access to the CA database, which contains the

45

Design and implementation of the KEMTLS-PDK-based architecture

certificates managed by the PKI. The PKI encompasses another entity that is the OCSP
Responder, which has its own PKC generated by the CA after having received a valid CSR,
and stores a copy of CA’s PKC. The OCSP Responder receives requests of OCSP staple
by Ground nodes, in order to attest the current validity of their certificate, to be sent
together with their certificates during the handshake. In this way, the provider does not
have to contact the CA to verify client authentication. OCSP Responder has access to the
CA database to verify the status of a certificate.

5.2 Implementation
The designed architecture aims to allow Mission Operations (MO) applications interaction
using encryption upon the successful establishment of a secure session. Building upon the
existing foundation of CCSDS MO services and the CCSDS Message Abstraction Layer
(MAL), implemented in Java by the European Space Agency [13], the Secure MAL im-
plementation (derived from the Secure MAL developed in the HSMAAS - MO Project)
has also been realized in Java. The Public Key Infrastructure (PKI) is implemented us-
ing Docker containers for both Certification Authority (CA) and Online Certificate Status
Protocol (OCSP) Responder. These containers are executed during the setup phase on
ground, ensuring availability whenever an entity requests a certificate. They also handle
tasks such as revoking invalid certificates and verifying the validity of a certificate. The
Kyber functions for Key Encapsulation Mechanism (KEM) are executed using the official
implementation of Kyber [25].

5.2.1 Software behaviour
The software behavior is elucidated through a high-level sequence diagram presented in
Figures 5.2 and 5.3. In Figure 5.2, the MO Security Service Consumer and MO Secu-
rity Service Provider, situated at the two endpoints, engage in communication over an
untrusted network, performing the handshake in order to mutually authenticate and es-
tablish a session key via MO operations. These MO operations, shown in Table 5.1, are
openKEMTLSSecureSession_KeyExchange and clientFinished, and are performed using
MAL messages. In MO context, there are six Interaction Patterns (IP) and the following
three are used within the implementation:

• SendIP: utilized for unidirectional data transmission without requiring a response or
acknowledgment. This IP is employed for secure exchange of encrypted data.

• SubmitIP: it sends data without receiving a response, but an acknowledgment is
provided. This pattern is used for clientFinished message, where the acknowledgment
is crucial for the client to confirm the successful completion of the handshake.

• RequestIP: data is sent, and a response is received. It is used for openKEMTLSSe-
cureSession_KeyExchange message and its corresponding response.

In Table 5.1, IN encompasses the input arguments of the operation, while OUT represents
the produced output. The format of their values is expressed as <name of argument> :
(<object type>).

46

5.2 – Implementation

Table 5.1. MO operations

Operation identifier openKEMTLSSecureSession_KeyExchange
Interaction Pattern REQUEST
Pattern Sequence Message Body Type

IN REQUEST clientHello_AuthenticationData :
(ClientHello_AuthenticationData)

OUT RESPONSE serverHelloChallengeServerFinished
: (ServerHelloChallengeServerFin-

ished)
Operation identifier clientFinished
Interaction Pattern SUBMIT
Pattern Sequence Message Body Type

IN SUBMIT clientFinished : (ClientFinished)

Figure 5.2. Sequence diagram of the handshake.

The initiation of the handshake is an automated process triggered by the consumer
with the transmission of the first message and handled by the Security Service code. Upon
successful verification of the consumer’s finished message by the provider, they can start
exchanging MAL messages whose bodies are encrypted using AES-256-GCM-no padding
and the established shared secret. The changes introduced to the handshake are deeply
detailed in section 5.2.2.

Subsequently, the software behavior aligns with that of HSMAAS - MO: as depicted
in Figure 5.3, MO applications exchange encrypted MAL messages using MO Security

47

Design and implementation of the KEMTLS-PDK-based architecture

Service sendEncryptedData operation. The encryption/decryption of MAL message bodies
is performed by the Secure Access Control component that is provided by Secure MAL.
When a peer decides to terminate its execution, all the session keys are removed from its
SSM.

Figure 5.3. Software behaviour after session establishment.

5.2.2 KEMTLS-PDK-based handshake
When a MO client Security Application wants to communicate with a MO server Security
App, it starts the handshake. Session resumption mechanism is provided: if a session has
been previously established with the same peer, it is possible to directly exchange appli-
cation data encrypted with the session key established in a prior handshake. Otherwise,
the entire handshake must be executed. This handshake is built upon KEMTLS-PDK
handshake (refer to section 3.4.1), with the introduction of steps that are necessary for the
specific architecture. These additional steps are highlighted in bold in Figures 5.4 and 5.5.
Notably, there is no negotiation of algorithms, as they are predetermined by the spacecraft.
Consequently, the client must adhere to the algorithms chosen by the spacecraft. In this
context, the selected key establishment algorithm is Kyber512. The changes introduced to
the handshake are:

• clientHello: it is the concatenation of the ephemeral public key pke computed with
KeyGen function, the ciphertext cts output of the Encaps function execution over the
static Kyber512 public key pks of the provider. Then the concatenation encompasses
the sessionId and sessionUri associated with the specific session. If sessionId is 0,
then the client wants to establish a new session, otherwise it is attempting to resume
an already established session.

48

5.2 – Implementation

• authenticationData: it is composed by concatenating several elements, all encrypted
using the symmetric key ETS, which was computed in the preceding step by the
client. The included fields consist of the client’s public key certificate, the OCSP
staple associated to client’s certificate, client’s long-term Kyber public key and the
signature of the latter, computed using Ed25519 private key associated to the public
key contained in client’s certificate.

• clientHelloAuthNData: it is the concatenation of clientHello and authenticationData.

• openKEMTLSSecureSession_KeyExchange(clientHelloAuthNData): it represents the
initial message transmitted by the client to the server during the handshake. It
contains the clientHelloAuthNData, and serves as an indication to the server that the
client intends to establish a session.

• processClientHello: after receiving the first message by the client, the server decrypts
all its fields and computes the digest of the received client’s static Kyber public key
with the cryptographic hash function chosen at setup time (i.e. SHA3-512). Then, it
decrypts the received signature using the public key contained in client’s certificate
and compares the two digests. If they are the same, then verification is successful,
otherwise the handshake is aborted. The server verifies if the received sessionId is
associated to a valid session key already established.

• verifyClientAuthentication: the server checks client’s certificate and OCSP staple. If
verification fails, the server aborts the handshake.

• serverHello: it is the concatenation of the ephemeral ciphertext cte computed in the
previous step by the server, and the sessionId chosen by the server. This sessionId
is equal to the one sent by the client if the server accepted to do session resumption,
otherwise it is associated to a new session that they will open at the end of the
successful execution of the handshake.

• serverHelloChallengeServerFinished: it is the content of the message that the server
will send in response to the received client’s message. It is the concatenation of
serverHello, challenge (i.e. ciphertext ctc encrypted with the key SHTS established
earlier in the handshake) and serverFinished (i.e. HMAC of the transcript CHAD,
where CHAD stands for ClientHelloAuthNData, computed with the key fks).

• openKEMTLSSecureSession_KeyExchange(serverHelloChallengeServerFinished): it
is the response to client’s message and contains serverHelloChallengeServerFinished.

• processServerHello(serverHelloChallengeServerFinished): received server response, the
client understands if session resumption is possible by comparing the received ses-
sionId contained in the serverHello with the sessionId contained in the clientHello.
When there is session resumption, the challenge is null.

49

Design and implementation of the KEMTLS-PDK-based architecture

Figure 5.4. First part of KEMTLS-PDK-based handshake.

50

5.2 – Implementation

Figure 5.5. Second part of KEMTLS-PDK-based handshake.

51

Design and implementation of the KEMTLS-PDK-based architecture

In the scenario of session resumption, after processing the serverHello, the client re-
trieves the session key associated to the session ID contained in the serverHello and trans-
mits the clientFinished message directly. The clientFinished contains the HMAC of the
transcript of messages exchanged, computed using dES, which is the last key generated by
both peers during the handshake. Then, the server processes the received clientFinished
checking it with the same procedure described for the verification of the serverFinished.
Once this verification is successful, the exchange of application data, encrypted using AES-
256-GCM-No padding, can commence.

Upon successful establishment of the secure session, the session key is securely stored
within the software security modules of both peers. Subsequent retrieval of the session key
is facilitated by referencing the corresponding session ID.

5.2.3 Secure Message Abstraction Layer
The Message Abstraction Layer (MAL) constitutes an integral part of the Mission Oper-
ations (MO) stack [34]. It provides language and message transport independence, along
with generic service patterns for MO. All messages traverse the Secure Access Control
check method, a method previously implemented in HSMAAS - MO, which is reused in
the current implementation. Depending on message type, check method establishes if the
body of the MAL message must be encrypted or not. Encryption is applied to outgoing
messages destined to a receiver that is outside the host and it is performed by using ses-
sion keys established during the implemented KEMTLS-PDK-based handshake. Incoming
messages are decrypted if the sender is external, with all internal messages exempt from
encryption and decryption.

The encryption process involves the following steps [36]:

1. Run any access control check implementation, if present.

2. Verify the existence of a secure session by checking if a symmetric key associated
with a session ID is stored within the Software Security Module. If a session key
exists, the client requests session resumption during the handshake; otherwise, the
full handshake is performed.

3. Obtain the session ID, which is 0 if the client intends to open a new session; otherwise,
it takes the value of the session ID associated with a previously opened session with
the desired server.

4. Encode the message body by serializing it into a list of blobs, as illustrated in Figure
5.6.

5. Encrypt the message body using AES-256-GCM with no padding.

6. Set the authenticationId header field to <sessionId>_<timestamp>.

7. Transform the message header fields area, service and operation.

8. Run Secure Access Control check().

52

5.2 – Implementation

In Figure 5.6, the initial MAL message is depicted on the left with its header contain-
ing the fields authenticationId, area, service, operation, and the body encompassing one
or more MAL elements. During encoding, the message undergoes transformation, and
the field authenticationId assumes the specific format required by Secure MAL, i.e., <ses-
sionId>_<timestamp>. The area field contains the security value, the service is Security-
Service, and the operation is sendEncryptedData, indicating to the receiver that the client
is equipped with the secure version of MAL and intends to encrypt/decrypt the exchanged

Figure 5.6. Secure MAL message encoding.

data. The body of the encoded message contains the original message header and a list of
blobs, which represent the bytes of the MAL elements in the original message body. This
list of blobs is encrypted using the session key associated with the session ID contained in
the authenticationId field. With the foundational support provided by the PKI and SSMs,
existing MO application can transit to MAL message encryption by repackaging them with
Secure MAL instead of MAL.

5.2.4 Secure Sessions
As shown in Figure 5.7, the same MO consumer can have multiple secure sessions with
different MO providers that can be on the same host. When a message goes through the
Secure Access Control with an address, e.g. malspp:247/100, the encryption key to use
can be found using this address and the session ID attached to the message. Basically,
SecureAccessControl is an interceptor for all messages sent and received to/by the consumer
or provider.

All the providers on the same host share the same SSM, using different slots, retrieving
their session keys via session IDs and employing the retrieved keys to decrypt messages.

53

Design and implementation of the KEMTLS-PDK-based architecture

Figure 5.7. Multiple secure sessions for the same consumer.

5.2.5 Software Security Modules
SoftHSMv2 library was used for peers’ software security modules [30], supported by OpenSC
pkcs11 [18] and Java SunPKCS11 provider [19]. The latter behaves as a bridge between
SoftHSMv2 and Java Cryptography Architecture and Java Cryptography Extension. The

implemented software delegates key storage and cryptographic functionalities to Soft-
ware Security Modules not to extract private keys and session keys, keeping all the cryp-
tographic computation within the modules themselves. Actually, this objective is partially
reached because currently SoftHSMv2 does not implement Kyber512 algorithm and Post-
Quantum Cryptography in general, so Kyber512 keys are extracted from the SSMs. The
objective of the architecture is to be reused in the future with security modules, hardware
or software-based (depending on the specific requirements), that will support PQC. An ex-
ample of the content of a SSM is provided in Figure 5.8: the peer is the Consumer Test Tool
(refer to section 6.1), which uses the slot 1 of the SSM. The consumer stores provider’s
Kyber public key, which is an object of type data labeled with "ops-sat_public_key".
Then the consumer stores its X.509 certificate, its own Kyber static keypair composed
by "consumer-test-tool_kyber_public_key" and "consumer-test-tool_kyber_private_key"
and its Ed25519 keypair. The two objects of type secret key refer to the same session key
established with the provider: the one that contains "server-traffic" in the label is used to
decrypt the incoming messages, the one that contains "client-traffic" is used to encrypt the
outgoing messages.

54

5.2 – Implementation

Figure 5.8. Example of the content of a Software Security Module.

55

Design and implementation of the KEMTLS-PDK-based architecture

5.3 Implementation challenges
In section 5.1, the implemented architecture has been described. However, the initial
architecture was different. Initially, the plan revolved around adopting the new Kyber cer-
tificates in place of the standard X.509 Public Key Certificates (PKCs), thereby obviating
the need for Ed25519 key pairs for peers. As illustrated in Figure 5.9, the Ground end
node’s SSM stored its Kyber certificate, standard X.509 Root CA and OCSP Responder
PKCs. Additionally, it stored the provider’s Kyber static public key and the established
session keys. The Space end node’s SSM stored only the peer’s Kyber certificate, Root
CA and OCSP Responder X.509 PKCs and session keys. This architecture allowed to
reduce the amount of data sent by the client within the first handshake message during
the handshake.

Figure 5.9. Initial implemented architecture.

As shown in Figure 5.10, instead of transmitting the encryption of its standard X.509
PKC, Kyber public key and signature of Kyber public key in the initial handshake mes-
sage, the client sent the encryption of its Kyber certificate and OCSP staple computed
by the OCSP responder over the client’s Kyber certificate. Although the generation of

56

5.3 – Implementation challenges

Figure 5.10. First part of initial KEMTLS-PDK-based handshake.

Kyber certificates posed challenges, overcoming them led to the emergence of two subse-
quent challenges: devising a method to request a Kyber certificate and enabling the OCSP
Responder to validate its authenticity. The details of each challenge are elaborated upon
in the following subsections. In order to solve all these three challenges, the architecture
was modified, introducing X.509 PKCs for the nodes, instead of Kyber certificates. These
X.509 PKCs contain Ed25519 public keys, and the corresponding private keys are stored
within the software security modules of the owners. When a node wants to ask for a X.509
certificate, it creates a Certificate Signing Request using OpenSSL and sends it to the
Certification Authority. Moreover, each node stores its Kyber keypair into the SSM and
when a client wants to initiate the handshake, it transmits its Kyber public key together
with the signature of this key, performed using the Ed25519 private key contained in the
X.509 certificate.

5.3.1 Kyber certificate
The Kyber certificates implemented in this study are founded on the specifications outlined
in the Internet Engineering Task Force (IETF) draft entitled ’Internet X.509 Public Key

57

Design and implementation of the KEMTLS-PDK-based architecture

Infrastructure - Algorithm Identifiers for Kyber’ [39]. Adhering to the X.509 standard, the
structure of Kyber certificates encompasses the following fields: the version, denoting the
X.509 standard version; the serial number, serving as a unique identifier for the certificate;
the issuer, containing the Relative Distinguished Name (RDN) of the entity that generated
the certificate; the Validity, delineating the temporal validity of the certificate; and the
RDN of the Subject, which is the owner of the certificate. The Public Key Algorithm field of
the sequence SubjectPublicKeyInfo contains Kyber512 identifier and the SubjectPublicKey
value is the string of the byte stream of Kyber512 public key. Given Kyber’s role of key
establishment algorithm, the only extension available is Key Usage, marked as critical
and exclusively containing keyEncipherment to reflect the purpose of Kyber public keys.
As well as the corresponding Kyber private keys, Kyber certificates were encoded using
Distinguished Encoding Rules (DER) encoding of Abstract Syntax Notation One (ASN.1).

Certificate:
Data:

Version: <VERSION>
Serial Number:

<SERIAL NUMBER>
Issuer: <ISSUER RDN>
Validity:

NotBefore: <DATE & TIME>
NotAfter: <DATE & TIME>

Subject: <SUBJECT RDN>
SubjectPublicKeyInfo:

Public Key Algorithm: id-alg-kyber-512
SubjectPublicKey: <BIT STRING>

Extensions:
CERT-KEY-USAGE: critical

keyEncipherment

The generation of Kyber certificates posed significant challenges, primarily stemming from
the intricacies of manual implementation using the post-quantum cryptography provider of
Bouncy Castle [2] Java cryptographic library. Noteworthy difficulties included the recog-
nition of the Kyber OID (Object Identifier) and complications arising during the reading
of both the generated certificates and their associated private keys within the Java envi-
ronment, leveraging the capabilities of Bouncy Castle. Navigating these challenges was
imperative to establish a functional and recognizable version of a Kyber certificate. Once
this goal was achieved, the focus shifted to the implementation of a Certificate Signing
Request.

5.3.2 Generation of Certificate Signing Requests
To obtain an X.509 certificate, an applicant must submit a PKCS#10 Certificate Signing
Request (CSR) [17] to the Certification Authority (CA). A CSR is a message containing
certification request information, including the public key the requester wants to be signed,
the signature algorithm to use, and the digital signature of the certification request infor-
mation. Upon receiving a CSR, the CA verifies that the provided information is valid and

58

5.3 – Implementation challenges

verifies the signature to ensure that the applicant truly owns the private key corresponding
to the public key chosen for inclusion into the certificate. An inherent challenge arises
when dealing with Kyber certificates, as the applicant lacks a means to sign the certificate
request information using the Kyber private key since Kyber is not a digital signature al-
gorithm. A potential solution, proposed in "Proof-of-possession for KEM certificates using
verifiable generation" [10], involves simultaneous key generation and proof of possession.
However, the objective of this thesis project was to retain much of the original architecture
and infrastructure while utilizing OpenSSL. Although the Open Quantum Safe provider
for OpenSSL [35] offers PQC functionalities, it currently does not implement certificates
uniquely designed for post-quantum key encapsulation mechanisms.

5.3.3 Certificate verification with OpenSSL
The third challenge pertained to the verification of Kyber certificates generated using
Bouncy Castle. To generate an Online Certificate Status Protocol (OCSP) staple, the
OCSP responder must verify the status of the certificate, determining its validity. The
OCSP Responder, managed using OpenSSL, encountered difficulties because the certifi-
cates were manually generated in Java. Despite being signed using the private key of the
OpenSSL Certification Authority, the OCSP Responder verification consistently failed.

Figure 5.11. OpenSSL index.txt file content.

This failure was attributed to the OpenSSL OCSP Responder’s reliance on checking the
content of a file named index.txt, as depicted in Figure 5.11. This file contains an entry for
each certificate generated by the CA, featuring details such as status, generation date, a
certificate-associated number, and the distinguished name of the certificate holder. Since
certificate generation occurred externally to OpenSSL, no entries were added. Attempting
manual modifications to the index.txt file to facilitate successful verification and adding the
generated certificates to the CA database resulted in OpenSSL crashing. Faced with these
challenges, a reevaluation of the design phase was undertaken, leading to the adoption of
the solution described at the beginning of this chapter.

59

60

Chapter 6

Integration and Testing with
OPS-SAT Satellite

The implemented KEMTLS-PDK-based handshake, detailed in Chapter 5, underwent rig-
orous testing, evolving from a standalone application to a real-world scenario involving
OPS-SAT satellite. The progression included successful tests with local Mission Oper-
ations Applications, EchoGround and EchoSpace, exchanging encrypted echo messages.
Subsequently, the architecture was adapted to the unique challenges posed by OPS-SAT,
a pioneering spacecraft with an experimental nature. This choice was led by the ease of
integration, coupled with the author’s familiarity gained during the internship at European
Space Operations Centre, where participation in the OPS-SAT Mission Control Team was a
key responsibility. OPS-SAT tests involved firstly the Engineering Model of the spacecraft,
then the satellite itself.

Before delving into the experiment architecture, an overview of OPS-SAT satellite is
provided, to outline its innovative features and the experimental objectives that make it
an ideal candidate for the proposed study. The chapter proceeds with an in-depth explo-
ration of the experiment architecture tailored for OPS-SAT. To facilitate a comprehensive
understanding, the chapter offers a detailed account of the setup configuration for the
OPS-SAT experiment. Step-by-step instructions are provided to guide readers through the
execution process, ensuring clarity in implementation. Finally, a thorough analysis and
interpretation of the obtained results conclude the chapter.

Through this chapter, the thesis aims to showcase the adaptability of the KEMTLS-
PDK-based handshake in a practical, mission-critical setting, emphasizing its relevance in
advancing secure communication protocols for space missions.

6.1 OPS-SAT
OPS-SAT is the first 3U CubeSat directly owned and operated by the European Space
Agency [6]. Launched on 18th December 2019 from Kourou, in French Guiana, OPS-SAT
is an experimental nanoSatellite stationed in low Earth orbit. Operated from the Euro-
pean Space Operations Centre (ESOC) in Darmstadt, it is the first satellite mission in the
world designed to test satellite control technology in orbit. Figure 6.1 provides a visual

61

Integration and Testing with OPS-SAT Satellite

representation of OPS-SAT. Functioning as an open software/hardware innovation plat-
form, the satellite enables testing of new protocols and standards. Moreover, it facilitates
European industry, institutions, and individuals in conducting in-flight experiments by
running software and firmware, transmitting commands to the spacecraft through the In-
ternet. This process is swift, cost-free, and non-bureaucratic. Currently, OPS-SAT boasts
over 260 registered experiments, encompassing areas such as telemetry, image compression
algorithms, and experimental IP-cores on the FPGA. Experimenters communicate with
their flight experiments by accessing the space segment via the Satellite Experimental Pro-
cessing Platform (SEPP). As the heart of the mission payload system, SEPP is integral
to OPS-SAT’s experimental nature, processing all major experiments. SEPP comprises an
Altera Cyclone V SX System-on-Chip (SoC) digital logic device and a Cyclone V Field
Programmable Gate Array (FPGA). The SEPP system image runs Linux Ångström and
incorporates the NanoSatMO Framework (NMF) [14], written in Java, which interfaces
with all the OPS-SAT payloads systems.

Figure 6.1. OPS-SAT Satellite Source: ESA.

NMF provides services to experimenter applications, allowing NMF applications to run
without direct access to the real satellite hardware, leveraging the simulator based on
the NMF SDK [3]. The NMF infrastructure hosts Mission Operations (MO) provider
applications, housekeeping MO services, and a Supervisor responsible for controlling the
life cycle of end-user MO applications. The NMF SDK simulates core OPS-SAT payloads
(e.g., camera, GPS, iADCS) and supports the execution of simulation scenarios using the
Consumer Test Tool (CTT). This tool enables experimenters to test and manually verify
their experiments. CTT is also used to interact with end-user MO applications running on
OPS-SAT. Communication between experimenters and SEPP can occur offline, through
file transfer, or live, receiving and sending space packets in real-time via MO services over
the Internet [11].

62

6.2 – Experiment architecture

6.2 Experiment architecture
An high-level representation of the architecture utilized to run the experiment with OPS-
SAT satellite is depicted in Figure 6.2. It is coherent with the architecture used by HS-
MAAS MO Project (refer to section 4.4) for in-orbit demonstration. On ground, there is
the dockerized Public Key Infrastructure, composed of the CA and the OCSP Responder.
The ground end node has a Software Security Module, which contains session keys, node’s
X.509 PKC, Ed25519 private key, Kyber512 static keypair, OPS-SAT Kyber512 static pub-
lic key, CA and OCSP Responder PKCs. The CTT is the Consumer Test Tool, graphical

Figure 6.2. High-level experiment architecture.

MO services client used to ask for Mission Operations (MO) services. CTT can connect
to any MO service provider app, send commands to it and display responses. It is used
to ask for PushClock MO application, which simply sends the current time every second.
The PushClock is run by the NanoSat MO Framework. The Ground MO Proxy translates
MALTCP protocol into MALSPP without being able to decrypt the messages, sends them
to the NMF MO applications and caches the space side state. A deeper view is given
by Figure 6.3, in which continuous arrows represent non-encrypted exchange of messages
and dotted arrows represent encrypted application data. Communications between CTT
and Ground MO Proxy are not encrypted, messages sent by the CTT to OPS-SAT apps
that go through the Ground MO Proxy are encrypted. Both CTT and Ground MO Proxy

63

Integration and Testing with OPS-SAT Satellite

share the same Software Security Module, using the former the slot 1, the latter the slot
0. Considering that CTT is the client and the proxy serves as a server for CTT and as a
client for OPS-SAT, both can interact with OCSP Provider to ask for OCSP staples. After
having translated the transport protocol of the messages, the Ground MO Proxy sends
them to ESOC-1 antenna, through a SSH channel MALSPP over TCP. Then the antenna
uplinks the messages to the satellite during passes, via MALSPP. A pass is the period of
time when the satellite is above the local horizon and it is able to communicate with the
ground station. All involved entities (CTT, NMF Supervisor, the specific app exp263 that
runs PushClock and Ground MO Proxy) have the secure version of MAL, so whenever
a client sends the initial message, the KEMTLS-PDK-based handshake is initiated. The
NMF Supervisor and exp263 share the same SSM and slot, thereby they use the same
session keys.

Figure 6.3. Interactions within the architecture.

64

6.3 – Setup configuration of the experiment

6.3 Setup configuration of the experiment
Considering that a satellite pass happens in few minutes, to run the experiment it is
necessary that everything that can be anticipated is done at setup time. Firstly, it is
necessary that the Docker containers of CA and OCSP Responder are deployed. During
build process of CA container, a self-signed certificate is generated for the CA and during
build process of OCSP Responder, OCSP Responder certificate is generated and signed by
the CA. A copy of CA and OCSP Responder certificates is stored into each node’s SSM.
Consumer Test Tool and Ground MO Proxy are patched with Secure MAL dependency.
They run on the same machine, where a Software Security Module is installed, and they are
configured to use two different slots of the SSM. CTT and Ground MO Proxy ask to CA
for having a X.509 PKC, sending a CSR. The CA receives their CSRs, verifies them and
after successful verification, it generates and returns their X.509 PKCs. These certificates
are installed into the SSM. OPS-SAT follows the same procedure to request a certificate,
during a step that precedes the one in which the experiment is run. At setup time, Ground
MO Proxy, CTT and OPS-SAT node generate their Kyber512 keypairs and store them
into SSMs.

The algorithms to use are set according to the needs of the spacecraft. For Consumer
Test Tool client, these algorithms, together with the configuration at setup time, are:
Environment
OCSP_RESPONDER_URI = http : // 1 7 2 . 2 2 . 0 . 3 : 8 0 8 0
IDENTITY_KEY_LABEL = consumer−te s t −t o o l
PKCS11_CONFIG_PATH = ground/nmf/consumer−te s t −t o o l / pkcs11 . c f g
PKCS11_PASSWORD = aj$Q78dnSr ! r=
CA_CERT_PATH = ground/nmf/consumer−te s t −t o o l / pki /rootCA . c r t
OCSP_CERT_PATH = ground/nmf/consumer−te s t −t o o l / pki / ocsp . c r t
IDENTITY_CERT_PATH = ground/nmf/consumer−te s t −t o o l / pki /consumer−t
est−t o o l . c r t
IDENTITY_KYBER_PRIV_KEY_PATH = ground/nmf/consumer−te s t −t o o l / pki /
consumer−te s t −tool_kyber_private_key . txt
IDENTITY_KYBER_PUB_KEY_PATH = ground/nmf/consumer−te s t −t o o l / pki /c
onsumer−te s t −tool_kyber_public_key . txt
SERVER_KYBER_PUBLIC_KEY_PATH = ground/nmf/consumer−te s t −t o o l / pki /
ops−sat_kyber_public_key . txt
KEYGEN_SCRIPT_PATH = ground/nmf/ bin / generate_kyber512_keypair
ENCAPS_SCRIPT_PATH = ground/nmf/ bin / kyber_encapsulat ion
DECAPS_SCRIPT_PATH = ground/nmf/ bin / kyber_decapsulat ion

Handshake
esa .mo. pki . random . a lgor i thm = PKCS11
esa .mo. pki . random . bytes . s i z e = 128
esa .mo. pki . hashing . a lgor i thm = SHA−512
esa .mo. pki . s i gna tu r e . a lgor i thm = SHA512withECDSA

Encryption
esa .mo. pki . hmac . a lgor i thm = HmacSHA256

65

Integration and Testing with OPS-SAT Satellite

esa .mo. pki . c i phe r . a lgor i thm = AES/GCM/NoPadding
esa .mo. pki . encrypt ionkey . a lgor i thm = AES
esa .mo. pki . encrypt ionkey . s i z e = 256
esa .mo. pki . i v s e ed . s i z e = 16
esa .mo. pki . gcm . authtag . l ength = 128
esa .mo. pki . encrypt ion . host . i n t e r n a l = f a l s e
esa .mo. pki . encrypt ion . c l e a r t e x t . a r ea s = 7 ,105

For OPS-SAT, the software is encapsulated into an opkg package and uplinked by OPS-
SAT Mission Control Team. The binaries of Kyber512 encapsulation, decapsulation and
key generation are cross-compiled in order to run on the spacecraft. A SSM is installed
onboard.

Initially, the chosen HMAC algorithm was HmacSHA512 but it was replaced with
HmacSHA256 because HmacSHA512 did not work. The client’s Ed25519 private key is
used to sign using the algorithm SHA512withECDSA. Kyber algorithm, in every variant
(i.e., Kyber512, Kyber768 and Kyber1024), produces a session key of 256 bits, that is
why esa.mo.pki.encryptionkey.size is 256. There is not internal encryption, i.e., messages
exchanged within the same host are sent in clear. The value of the parameter named
esa.mo.pki.encryption.cleartext.areas indicates that encryption is turned off for Software
Management (i.e., 7) and Platform (i.e., 105) MAL Areas.

6.4 Run the in-orbit demonstration
During the in-orbit demonstration with OPS-SAT satellite, the onboard NanoSat MO
Framework (NMF) Supervisor, which is the one that runs onboard MO applications, has
to be replaced with the version that supports Secure MAL, in order to let the Supervi-
sor establish secure sessions through the KEMTLS-PDK-based handshake. The in-orbit
demonstration can be summarized in the following steps:

1. A SSH tunnel between the Ground MO Proxy and ESOC-1 antenna is opened with
the command:

ssh −vvv NoemiT@opssat1 . e soc . esa . i n t −N −R0 . 0 . 0 . 0 : 1 6 2 5 6 : l o c a l h o s t :4096

This SSH tunnel is necessary to let Ground MO Proxy and NMF Supervisor establish
a session.

2. Establish a secure session between Ground MO Proxy and NMF Supervisor to encrypt
exchanged data, sent via uplink and downlink through antenna.

3. Start the Virtual Network Computing (VNC) server on the machine that hosts CTT
and Ground MO Proxy, to let the VNC client connect to it showing a window with
the desktop of the remote machine on which the VNC server runs and taking control
of the remote machine. This is necessary because the Consumer Test Tool, which
plays the role of the consumer in the designed architecture, is a graphical interface.
The VNC client runs CTT, and its Graphical User Interface is started, as shown in
Figure 6.4. The Directory Service URI of Ground MO Proxy is inserted in CTT GUI

66

6.4 – Run the in-orbit demonstration

Figure 6.4. Connecting CTT to NMF Supervisor Provider.

and then, from the sidebar named "Providers List", nanosat-mo-supervisor is selected
to let CTT connect to NMF Supervisor.

4. Select exp263 application in the list of NMF Mission Operations Applications and
ask NMF Supervisor to run it. This triggers the initiation of the handshake between
CTT and NMF Supervisor, and the establishment of a secure session at the end of
the successful handshake process.

5. To establish a secure session between CTT and exp263, exp263 is selected from
Providers List and the session establishment leads to the storage of the session key
shown in Figure 6.5. This key is used for encryption and decryption of messages ex-
changed between CTT and exp263 end nodes. The CTT logs of the hanshake with
exp263 are provided in Figure 6.7, while exp263’s part of the handshake is shown
in Figure 6.8. They report exactly the steps of the handshake described in section
5.2.2. Then, in Figure 6.9, there is a perspective of the outgoing messages sent by
CTT and of the incoming messages received by CTT. It is evident that the messages
destined to and coming from NMF Supervisor and exp263 application are encrypted.
The logs provide a summary of MO services, "count" column contains the number
of messages encrypted so far and "Encrypted size" column represents the number of
encrypted bytes of the message.

The code of exp263 app starts PushClock application, opening a new tab related to Push-
Clock. Telemetry, i.e. onboard time sent by PushClock, is sent encrypted by exp263 and
is decrypted and displayed by CTT, as shown in Figure 6.6.

67

Integration and Testing with OPS-SAT Satellite

Figure 6.5. Store session key.

Figure 6.6. Onboard time decrypted by CTT.

68

6.4 – Run the in-orbit demonstration

Figure 6.7. Logs of CTT’s handshake with exp263.

Figure 6.8. Logs of exp263’s handshake with CTT.

69

Integration and Testing with OPS-SAT Satellite

6.5 Results
The experiment can be deemed successful as it fulfills all the project requirements. Specif-
ically, it demonstrates the feasibility of employing a Post-Quantum Cryptography proto-
col, KEMTLS-PDK, to establish secure sessions between Mission Operations (MO) ap-
plications on ground and MO applications aboard a spacecraft that implements the MO
stack. The established secure sessions enable peers to exchange encrypted messages using a
quantum-resistant symmetric cryptographic protocol, namely AES-256-GCM-no padding.
Rigorous testing has been conducted, confirming the successful establishment of all ex-
pected secure sessions through the KEMTLS-PDK-based handshake. Notable instances
include the Ground MO Proxy and NMF Supervisor, CTT and Supervisor, as well as
CTT and exp263. Following a successful handshake, the system permits the transmission
of encrypted telecommand to the satellite and the reception of encrypted telemetry from
OPS-SAT. The examination of Software Security Modules content confirms the correct
establishment of session keys, ensuring that involved peers possess identical session keys.
Furthermore, the implemented symmetric encryption and decryption mechanisms exhibit
accurate functionality, as illustrated in Figure 6.6, where the readability of the onboard
time received as part of telemetry is evident. Both the CTT and onboard statistics tables
reflect encrypted messages and the number of bytes encrypted. Notably, the spacecraft’s
onboard behavior remains in accordance with requirements: the NMF Supervisor interacts
with other onboard applications without encrypting and decrypting messages, as stipulated
by the necessity to omit encryption within the same host. This successful implementation
showcases the viability and effectiveness of the proposed cryptographic protocol in a real-
world space mission context.

70

6.5 – Results

Figure 6.9. Logs of CTT outgoing and incoming messages.

71

72

Chapter 7

Conclusions and Future Work

The master’s thesis main objective was to present the architecture implemented to secure
ground-to-space communications between Mission Operations applications that run on
ground and on spacecrafts. Using KEMTLS-PDK protocol on top of CCSDS Message
Abstraction Layer, sessions have been established with a process that is quantum-resistant,
allowing the exchange of data encrypted using AES-256-GCM-no padding algorithm, which
is secure against quantum attacks. The process that led to the implementation and then to
in-orbit demonstration of the architecture with OPS-SAT satellite was challenging, starting
from delving into Post-Quantum Cryptography, to considering the intricacies of space
systems.

The project started as an extension of HSMAAS MO project, realised by European
Space Agency in collaboration with Skudo and CGI, so the initial phase involved a thor-
ough analysis of the HSMAAS MO project. It required a meticulous examination of project
documentation and source code to understand, modify, and integrate Post-Quantum Cryp-
tography. Firstly, the TLS 1.3-based handshake was studied, followed by an examination
of its integration into the Message Abstraction Layer. Subsequently, the study extended
to both standalone testing and evaluation within the framework of two dockerized Mission
Operations applications operating on ground. After delving into the initial project during
the intensive understanding phase, the focus shifted towards discerning the components
to retain, those requiring modification, and devising strategies for their adaptation while
integrating Post-Quantum Cryptography without causing disruptions to the existing frame-
work. The implementation of KEMTLS-PDK-based handshake as a standalone application
was succeeded by a meticulous testing phase, during which the tests were adapted from
the initial project to align with the current implementation. The next step was compre-
hending what Mission Operations are, and how Message Abstraction Layer works, in order
to understand how to integrate the handshake on top of it. Numerous individuals played
pivotal roles in navigating these phases: colleagues from ESA and from CGI were instru-
mental in understanding the source code, providing documentation, sharing knowledge,
offering valuable guidance during the implementation, and providing crucial assistance in
troubleshooting errors encountered during both implementation and testing stages. The
most challenging part of this work was the initial implementation, as detailed in Section
5.3, because of the innovative nature of incorporating Kyber certificates, a concept en-
tirely new and derived solely from the IETF draft [39]. This implementation required an

73

Conclusions and Future Work

in-depth analysis of the IETF draft, of the structure of an X.509 public key certificate
and utilization of the Bouncy Castle Java cryptographic library. The solution to overcome
problems related to Kyber certificate request and verification was to use both PQC and
classical cryptography. After being able to find this solution, the next challenge was re-
lated to adopting the architecture to a specific scenario that encompasses specific entities:
Consumer Test Tool is the MO consumer application, NMF Supervisor and PushClock MO
app are the providers, Ground MO proxy is a consumer for NMF Supervisor and is needed
to forward the MAL messages from CTT to NMF Supervisor/PushClock just changing the
transport protocol and without being able to decrypt the message bodies.

The tests conducted with the Engineering Model of the satellite proved to be both
incredibly interesting and complex. Configuring the environment, ensuring accurate pa-
rameter settings, and orchestrating the configuration in the correct order and with precise
timing constituted a remarkable lesson about space systems operation. Moreover, the
internship at ESA allowed the involvement in other tasks beyond the thesis, including
contributing to OPS-SAT onboard software development, which provided additional con-
text for understanding issues that, while not directly related to implemented architecture,
surfaced during the project.

This thesis work not only constituted a significant challenge, but also carried a pro-
found responsibility to demonstrate that not only space systems require encryption for
communications, but that this encryption must be robust enough to withstand emerging
threats as quantum ones, because spacecrafts have a long life cycle that lets them staying
in orbit for many years. The collaborative efforts and perseverance led to the successful
implementation of the proposed cryptographic solution, which showcases the feasibility and
effectiveness of integrating advanced cryptographic techniques into the complex domain of
space systems. While the journey was undoubtedly demanding, the ultimate goal was suc-
cessfully realized, contributing to the advancement of secure communication methods in
Space. Contributing to the evolution of cryptography for space systems was both an honor
and a captivating experience. Integrating knowledge from Master’s Degree studies, delving
into the state-of-the-art literature, designing inventive solutions, conducting research, and
implementing novel concepts provided a comprehensive learning journey. The culmination
of the project with real satellite testing, initially with the Engineering Model and later
with the actual spacecraft, added a practical dimension to the academic exploration.

As a prospect for future work, enhancing the presented implementation could involve
a transition to the initial idea of adopting Kyber certificates instead of X.509 PKCs. This
would entail sending the encryption of Kyber certificates instead of the encryption of stan-
dard X.509 PKCs, Kyber long-term public key, and its signature. This solution would
reduce the amount of data sent by the client to the server, being conceptually correct
because in KEMTLS-PDK handshake, digital signature is not needed, so Kyber certifi-
cates would be sufficient. However, implementing such a solution necessitates support for
Kyber certificates by tools like OpenSSL: this would include commands for generating,
verifying their validity, and creating certificate requests comparable to Certificate Signing
Requests. An advantageous aspect of the current architecture is its adaptability beyond
the OPS-SAT satellite; it can be readily reused for other satellites based on the CCSDS
MO stack. Shifting towards using only Kyber certificates could enable the establishment
of secure sessions based only on Post-Quantum Cryptography. Looking ahead, it would be
intriguing to conduct additional tests that were not feasible during the internship. These

74

Conclusions and Future Work

tests could focus on performance metrics such as computation, memory usage, and time
efficiency. Furthermore, conducting experiments with both KEMTLS-PDK and TLS 1.3
would provide insights into their comparative effectiveness when deployed aboard a space-
craft.

75

76

Bibliography

[1] Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky, John M. Schanck,
Peter Schwabe, Gregor Seiler, and Damien Stehle. «CRYSTALS - Kyber: A CCA-
Secure Module-Lattice-Based KEM». In: 2018 IEEE European Symposium on Secu-
rity and Privacy (EuroS&P). 2018, pp. 353–367. doi: 10.1109/EuroSP.2018.00032.

[2] Bouncy Castle Cryptography Library. url: https://www.bouncycastle.org/java.
html.

[3] C. Coelho, D. Marszk, et al. «NanoSat MO Framework». In: url: https://github.
com/esa/nanosat-mo-framework.

[4] Sandro Coretti, Ueli Maurer, and Björn Tackmann. «A Constructive Perspective on
Key Encapsulation». In: 8260 (Jan. 2013). doi: 10.1007/978-3-642-42001-6_16.

[5] Laurence Duquerroy. CYBER SECURITY AND SPACE BASED SERVICES Webi-
nar. 2020. url: https://business.esa.int/sites/business/files/Cybersecurity%
20and%20Space%20based%20service_Webinar_Slides.pdf.

[6] David Evans. «OPS-SAT: Operational Concept for ESA’S First Mission Dedicated
to Operational Technology». In: May 2016. doi: 10.2514/6.2016-2354.

[7] XML Security Working Group F2F. Key Encapsulation: A New Scheme for Public-
Key Encryption. May 2009. url: https : / / lists . w3 . org / Archives / Public /
public-xmlsec/2009May/att-0032/Key_Encapsulation.pdf.

[8] Gregory Falco, Wayne Henry, Marco Aliberti, Brandon Bailey, Mathieu Bailly, Se-
bastien Bonnart, Nicolò Boschetti, Mirko Bottarelli, Adam Byerly, Joseph Brule,
Antonio Carlo, Giulia Rossi, Gregory Epiphaniou, Matt Fetrow, Daniel Floreani,
Nathaniel Gordon, Duncan Greaves, Bruce Jackson, Garfield Jones, and Mattias
Wallen. «An International Technical Standard for Commercial Space System Cyber-
security - A Call to Action». In: Oct. 2022. doi: 10.2514/6.2022-4302.

[9] Lov K. Grover. A fast quantum mechanical algorithm for database search. 1996. arXiv:
quant-ph/9605043 [quant-ph].

[10] Tim Güneysu, Philip Hodges, Georg Land, Mike Ounsworth, Douglas Stebila, and
Greg Zaverucha. Proof-of-possession for KEM certificates using verifiable generation.
Cryptology ePrint Archive, Paper 2022/703. https://eprint.iacr.org/2022/703.
2022. doi: 10.1145/3548606.3560560. url: https://eprint.iacr.org/2022/703.

[11] M. Henkel, P. Romano, and R. Zeif. «OPS-SAT Phase B2/C/D/E1 - Experimenter
ICD». In: 2016.

77

https://doi.org/10.1109/EuroSP.2018.00032
https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html
https://github.com/esa/nanosat-mo-framework
https://github.com/esa/nanosat-mo-framework
https://doi.org/10.1007/978-3-642-42001-6_16
https://business.esa.int/sites/business/files/Cybersecurity%20and%20Space%20based%20service_Webinar_Slides.pdf
https://business.esa.int/sites/business/files/Cybersecurity%20and%20Space%20based%20service_Webinar_Slides.pdf
https://doi.org/10.2514/6.2016-2354
https://lists.w3.org/Archives/Public/public-xmlsec/2009May/att-0032/Key_Encapsulation.pdf
https://lists.w3.org/Archives/Public/public-xmlsec/2009May/att-0032/Key_Encapsulation.pdf
https://doi.org/10.2514/6.2022-4302
https://arxiv.org/abs/quant-ph/9605043
https://eprint.iacr.org/2022/703
https://doi.org/10.1145/3548606.3560560
https://eprint.iacr.org/2022/703

BIBLIOGRAPHY

[12] Shivam Lohani and Rinki Joshi. «Satellite Network Security». In: 2020 Interna-
tional Conference on Emerging Trends in Communication, Control and Computing
(ICONC3). 2020, pp. 1–5. doi: 10.1109/ICONC345789.2020.9117553.

[13] D. Marszk, C. Coelho, et al. ESA’s Java implementation of the CCSDS MO services.
url: https://github.com/esa/mo-services-java.

[14] D. Marszk, C. Coelho, et al. «NanoSat MO Framework - mission tailoring for OPS-
SAT». In: url: https://github.com/esa/nmf-mission-ops-sat.

[15] Michele Mosca and Marco Piani. «Quantum Threat Timeline Report 2022». In: 2022.
url: https://globalriskinstitute.org/mp- files/2022- quantum- threat-
timeline-report-dec.pdf/.

[16] NIST. «Post-Quantum Cryptography - Selected Algorithms 2022». In: 2022. url:
https://csrc.nist.gov/Projects/post- quantum- cryptography/selected-
algorithms-2022.

[17] Magnus Nystrom and Burt Kaliski. PKCS #10: Certification Request Syntax Spec-
ification Version 1.7. RFC 2986. Nov. 2000. doi: 10.17487/RFC2986. url: https:
//www.rfc-editor.org/info/rfc2986.

[18] OpenSC - PKCS#11 API. url: https://github.com/OpenSC/libp11.
[19] Oracle. JDK 8 PKCS#11 Reference Guide. url: https : / / docs . oracle . com /

javase/8/docs/technotes/guides/security/p11guide.html.
[20] Massimo Pellegrino and Gerald Stang. Space security for Europe. Tech. rep. European

Union Institute for Security Studies (EUISS), 2016. url: http://www.jstor.org/
stable/resrep07091 (visited on 11/11/2023).

[21] PKCS #11 Cryptographic Token Interface Base Specification Version 2.40. OASIS.
url: https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-
base-v2.40-os.html.

[22] François Quiquet. Description of the Elements of a Satellite Command and Control
System. 2019. url: https://www.spacesecurity.info/en/description-of-the-
elements-of-a-satellite-command-and-control-system/.

[23] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446.
Aug. 2018. doi: 10.17487/RFC8446. url: https://www.rfc-editor.org/info/
rfc8446.

[24] «Rustls library». In: url: https://docs.rs/rustls/latest/rustls/.
[25] P. Schwabe, G. Seiler, et al. Kyber. url: https://github.com/pq-crystals/kyber.
[26] Peter Schwabe, Douglas Stebila, and Thom Wiggers. «More efficient post-quantum

KEMTLS with pre-distributed public keys». In: Computer Security – ESORICS 2021.
Ed. by Elisa Bertino, Haya Shulman, and Michael Waidner. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, Sept. 2021, pp. 3–22. isbn:
978-3-030-88418-5. doi: 10.1007/978-3-030-88418-5_1. url: https://kemtls.
org/publication/kemtlspdk/.

78

https://doi.org/10.1109/ICONC345789.2020.9117553
https://github.com/esa/mo-services-java
https://github.com/esa/nmf-mission-ops-sat
https://globalriskinstitute.org/mp-files/2022-quantum-threat-timeline-report-dec.pdf/
https://globalriskinstitute.org/mp-files/2022-quantum-threat-timeline-report-dec.pdf/
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.17487/RFC2986
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986
https://github.com/OpenSC/libp11
https://docs.oracle.com/javase/8/docs/technotes/guides/security/p11guide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/p11guide.html
http://www.jstor.org/stable/resrep07091
http://www.jstor.org/stable/resrep07091
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://www.spacesecurity.info/en/description-of-the-elements-of-a-satellite-command-and-control-system/
https://www.spacesecurity.info/en/description-of-the-elements-of-a-satellite-command-and-control-system/
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://docs.rs/rustls/latest/rustls/
https://github.com/pq-crystals/kyber
https://doi.org/10.1007/978-3-030-88418-5_1
https://kemtls.org/publication/kemtlspdk/
https://kemtls.org/publication/kemtlspdk/

BIBLIOGRAPHY

[27] Peter Schwabe, Douglas Stebila, and Thom Wiggers. «Post-Quantum TLS Without
Handshake Signatures». In: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’20. Virtual Event, USA: Association
for Computing Machinery, 2020, 1461–1480. isbn: 9781450370899. doi: 10.1145/
3372297.3423350. url: https://kemtls.org/publication/kemtls/.

[28] Peter Schwabe and Bas Westerbaan. Kyber Post-Quantum KEM. Internet-Draft draft-
cfrg-schwabe-kyber-03. Work in Progress. Internet Engineering Task Force, Sept.
2023. 32 pp. url: https://datatracker.ietf.org/doc/draft-cfrg-schwabe-
kyber/03/.

[29] Peter W. Shor. «Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer». In: SIAM Journal on Computing 26.5 (1997),
pp. 1484–1509. doi: 10.1137/S0097539795293172. eprint: https://doi.org/10.
1137/S0097539795293172. url: https://doi.org/10.1137/S0097539795293172.

[30] SoftHSM version 2. url: https://github.com/opendnssec/SoftHSMv2.
[31] Consultative Committee for Space Data Systems. Blue Books: Recommended Stan-

dards. url: https://public.ccsds.org/Publications/BlueBooks.aspx.
[32] Consultative Committee for Space Data Systems. «CCSDS Cryptographic Algo-

rithms». In: 2019. url: https://public.ccsds.org/Pubs/352x0b2.pdf.
[33] Consultative Committee for Space Data Systems. «CCSDS Mission Operations Mes-

sage Abstraction Layer». In: 2013. url: https : / / public . ccsds . org / Pubs /
521x0b2e1.pdf.

[34] Consultative Committee for Space Data Systems. «CCSDS Mission Operations Ser-
vices Concept». In: 2010. url: https://public.ccsds.org/Pubs/520x0g3.pdf.

[35] D. Stebla, M. Mosca, et al. oqsprovider - Open Quantum Safe provider for OpenSSL
(3.x). url: https://github.com/open-quantum-safe/oqs-provider.

[36] ESA HSMAAS Team. «Hardware Security Module as a Service (HSMaaS) / MO -
Software Design Document». In: 2023.

[37] ESA HSMAAS Team. «Hardware Security Module as a Service (HSMaaS) / MO -
Technical Note: Cryptographic App Experiment – Results». In: 2023.

[38] ESA HSMAAS Team. «Hardware Security Module as a Service (HSMaaS) / MO -
Technical Note: MO Security Analysis». In: 2023.

[39] Sean Turner, Panos Kampanakis, Jake Massimo, and Bas Westerbaan. Internet X.509
Public Key Infrastructure - Algorithm Identifiers for Kyber. Internet-Draft draft-ietf-
lamps-kyber-certificates-02. Work in Progress. Internet Engineering Task Force, Oct.
2023. 9 pp. url: https://datatracker.ietf.org/doc/draft- ietf- lamps-
kyber-certificates/02/.

[40] European Union. «European Union Space Strategy for Security and Defence». In:
2023.

[41] Thom Wiggers. «Post-Quantum TLS». PhD thesis. Nijmegen, The Netherlands: Rad-
boud University, Jan. 9, 2024. url: https : / / thomwiggers . nl / publication /
thesis/.

79

https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1145/3372297.3423350
https://kemtls.org/publication/kemtls/
https://datatracker.ietf.org/doc/draft-cfrg-schwabe-kyber/03/
https://datatracker.ietf.org/doc/draft-cfrg-schwabe-kyber/03/
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://github.com/opendnssec/SoftHSMv2
https://public.ccsds.org/Publications/BlueBooks.aspx
https://public.ccsds.org/Pubs/352x0b2.pdf
https://public.ccsds.org/Pubs/521x0b2e1.pdf
https://public.ccsds.org/Pubs/521x0b2e1.pdf
https://public.ccsds.org/Pubs/520x0g3.pdf
https://github.com/open-quantum-safe/oqs-provider
https://datatracker.ietf.org/doc/draft-ietf-lamps-kyber-certificates/02/
https://datatracker.ietf.org/doc/draft-ietf-lamps-kyber-certificates/02/
https://thomwiggers.nl/publication/thesis/
https://thomwiggers.nl/publication/thesis/

	List of Tables
	List of Figures
	Introduction
	Background
	Key Encapsulation Mechanism
	RSA-KEM

	Authenticated Key Exchange
	Public Key Infrastructure
	Certification Authority
	Online Certificate Status Protocol

	Transport Layer Security 1.3
	TLS 1.3 handshake
	OCSP Stapling

	Hardware Security Module

	Post-Quantum Cryptography
	Quantum Computing
	Shor's algorithm
	Grover's algorithm

	Transition to Post-Quantum Cryptography
	CRYSTALS-Kyber
	Key Encapsulation Mechanism functions
	Key exchange
	Authenticated key exchange
	Parameters

	KEMTLS-PDK
	Handshake with proactive authentication
	Comparison with TLS 1.3

	Cryptography in Space Systems
	Cybersecurity for Space Systems
	High-Level Architecture of a Space System
	Transformative Applications of Space Systems
	Cyber-attacks against Space Systems
	Countermeasures

	State-of-the-Art in Cryptography for Space Systems
	Goals in Cryptography for Space Systems
	Overview of an active ESA Project: Hardware Security Module As A Service (HSMAAS) - MO

	Design and implementation of the KEMTLS-PDK-based architecture
	Architecture
	Ground end node
	Space end node
	Ground Public Key Infrastructure

	Implementation
	Software behaviour
	KEMTLS-PDK-based handshake
	Secure Message Abstraction Layer
	Secure Sessions
	Software Security Modules

	Implementation challenges
	Kyber certificate
	Generation of Certificate Signing Requests
	Certificate verification with OpenSSL

	Integration and Testing with OPS-SAT Satellite
	OPS-SAT
	Experiment architecture
	Setup configuration of the experiment
	Run the in-orbit demonstration
	Results

	Conclusions and Future Work
	Bibliography

